题名 | Riesz s-energy-based Reference Sets for Multi-Objective optimization |
作者 | |
DOI | |
发表日期 | 2020-07-01
|
会议名称 | IEEE Congress on Evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
|
ISBN | 978-1-7281-6930-9
|
会议录名称 | |
页码 | 1-8
|
会议日期 | JUL 19-24, 2020
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Currently, reference sets, which are a collection of feasible or infeasible points in objective space, are the backbone of several multi-objective evolutionary algorithms (MOEAs) and quality indicators (QIs). For both MOEAs and QIs, an important question is how to construct the reference set regardless of the dimensionality of the objective space, preserving well-diversified solutions. The Simplex-Lattice-Design method (SLD) that constructs a set of convex weights in a simplex, has been usually used to define reference sets. However, it is not a good option since Pareto fronts with irregular geometries cannot be completely intersected by the weight vectors. In this paper, we propose a tool based on the Riesz s-energy to generate reference sets exhibiting good diversity properties. Our experimental results support the Riesz s-energy-based reference sets as a better option due to their invariance to the Pareto front shape and the objective space dimensionality. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | CONACyT[1920]
; SEP-Cinvestav grant[4]
|
WOS研究方向 | Computer Science
; Engineering
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS记录号 | WOS:000703998202090
|
EI入藏号 | 20204109317213
|
EI主题词 | Evolutionary algorithms
|
EI分类号 | Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85092073631
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185833 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/187942 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.CINVESTAV-IPN,Computer Science Department,Mexico City,Mexico 2.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Falcon-Cardona,Jesus Guillermo,Ishibuchi,Hisao,Coello,Carlos A.Coello. Riesz s-energy-based Reference Sets for Multi-Objective optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-8.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论