中文版 | English
题名

Modified Distance-based Subset Selection for Evolutionary Multi-objective Optimization Algorithms

作者
DOI
发表日期
2020-07-01
ISBN
978-1-7281-6930-9
会议录名称
页码
1-8
会议日期
19-24 July 2020
会议地点
Glasgow, UK
摘要
Evolutionary algorithms have been widely used to solve multi-objective optimization problems. Usually, the final population of an evolutionary algorithm is used as the output of multi-objective optimization. However, a current new trend is to select a pre-specified number of solutions from an unbounded external archive (UEA) as the final output of multi-objective optimization. Some subset selection methods have been proposed in the literature such as hypervolume-based and IGD-based selection. Recently, a distance-based subset selection (DSS) method was proposed for efficient subset selection from a large external archive. Whereas DSS efficiently finds a set of uniformly distributed solutions, it has some difficulties in the handling of solutions in the UEA as we demonstrate in this paper. To improve the performance of the DSS method, we propose a modified DSS method based on the IGD+ distance instead of the Euclidean distance. Experimental results on various benchmark problems show that the modified DSS method performs better than or equal to the original DSS method on most test problems.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703998201120
EI入藏号
20204109317043
EI主题词
Evolutionary algorithms ; Feature Selection ; Set theory
EI分类号
Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85092071314
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185734
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187943
专题南方科技大学
工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Shenzhen,518055,China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Chen,Weiyu,Ishibuchi,Hisao,Shang,Ke. Modified Distance-based Subset Selection for Evolutionary Multi-objective Optimization Algorithms[C],2020:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Weiyu]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
百度学术
百度学术中相似的文章
[Chen,Weiyu]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
必应学术
必应学术中相似的文章
[Chen,Weiyu]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。