题名 | Modified Distance-based Subset Selection for Evolutionary Multi-objective Optimization Algorithms |
作者 | |
DOI | |
发表日期 | 2020-07-01
|
ISBN | 978-1-7281-6930-9
|
会议录名称 | |
页码 | 1-8
|
会议日期 | 19-24 July 2020
|
会议地点 | Glasgow, UK
|
摘要 | Evolutionary algorithms have been widely used to solve multi-objective optimization problems. Usually, the final population of an evolutionary algorithm is used as the output of multi-objective optimization. However, a current new trend is to select a pre-specified number of solutions from an unbounded external archive (UEA) as the final output of multi-objective optimization. Some subset selection methods have been proposed in the literature such as hypervolume-based and IGD-based selection. Recently, a distance-based subset selection (DSS) method was proposed for efficient subset selection from a large external archive. Whereas DSS efficiently finds a set of uniformly distributed solutions, it has some difficulties in the handling of solutions in the UEA as we demonstrate in this paper. To improve the performance of the DSS method, we propose a modified DSS method based on the IGD+ distance instead of the Euclidean distance. Experimental results on various benchmark problems show that the modified DSS method performs better than or equal to the original DSS method on most test problems. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Engineering
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS记录号 | WOS:000703998201120
|
EI入藏号 | 20204109317043
|
EI主题词 | Evolutionary algorithms
; Feature Selection
; Set theory
|
EI分类号 | Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85092071314
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185734 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/187943 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Shenzhen,518055,China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Chen,Weiyu,Ishibuchi,Hisao,Shang,Ke. Modified Distance-based Subset Selection for Evolutionary Multi-objective Optimization Algorithms[C],2020:1-8.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论