中文版 | English
题名

Iterated Problem Reformulation for Evolutionary Large-Scale Multiobjective Optimization

作者
DOI
发表日期
2020-07-01
会议名称
2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings
ISBN
978-1-7281-6930-9
会议录名称
页码
1-8
会议日期
19 July 2020 到 24 July 2020
会议地点
United Kingdom
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Due to the curse of dimensionality, two main issues remain challenging for applying evolutionary algorithms (EAs) to large-scale multiobjective optimization. The first issue is how to improve the efficiency of EAs for reducing computation cost. The second one is how to improve the diversity maintenance of EAs to avoid local optima. Nevertheless, these two issues are somehow conflicting with each other, and thus it is crucial to strike a balance between them in practice. Thereby, we propose an iterated problem reformulation based EA for large-scale multiobjective optimization, where the problem reformulation based method and the decomposition based method are used iteratively to address the aforementioned issues. The proposed method is compared with several state-of-the-art EAs on a variety of large-scale multiobjective optimization problems. Experimental results demonstrate the effectiveness of our proposed iterated method in large-scale multiobjective optimization.

关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[61903178,61906081,61906001,"U1804262"]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703998200065
EI入藏号
20204109317077
EI主题词
Evolutionary algorithms ; Iterative methods
EI分类号
Optimization Techniques:921.5 ; Numerical Methods:921.6
Scopus记录号
2-s2.0-85092067953
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185553
引用统计
被引频次[WOS]:23
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187944
专题工学院_计算机科学与工程系
作者单位
University Key Laboratory of Evolving Intelligent Systems of Guangdong Province,Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,518055,China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
He,Cheng,Cheng,Ran,Tian,Ye,et al. Iterated Problem Reformulation for Evolutionary Large-Scale Multiobjective Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-8.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Iterated Problem Ref(2240KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He,Cheng]的文章
[Cheng,Ran]的文章
[Tian,Ye]的文章
百度学术
百度学术中相似的文章
[He,Cheng]的文章
[Cheng,Ran]的文章
[Tian,Ye]的文章
必应学术
必应学术中相似的文章
[He,Cheng]的文章
[Cheng,Ran]的文章
[Tian,Ye]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。