题名 | Iterated Problem Reformulation for Evolutionary Large-Scale Multiobjective Optimization |
作者 | |
DOI | |
发表日期 | 2020-07-01
|
会议名称 | 2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings
|
ISBN | 978-1-7281-6930-9
|
会议录名称 | |
页码 | 1-8
|
会议日期 | 19 July 2020 到 24 July 2020
|
会议地点 | United Kingdom
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Due to the curse of dimensionality, two main issues remain challenging for applying evolutionary algorithms (EAs) to large-scale multiobjective optimization. The first issue is how to improve the efficiency of EAs for reducing computation cost. The second one is how to improve the diversity maintenance of EAs to avoid local optima. Nevertheless, these two issues are somehow conflicting with each other, and thus it is crucial to strike a balance between them in practice. Thereby, we propose an iterated problem reformulation based EA for large-scale multiobjective optimization, where the problem reformulation based method and the decomposition based method are used iteratively to address the aforementioned issues. The proposed method is compared with several state-of-the-art EAs on a variety of large-scale multiobjective optimization problems. Experimental results demonstrate the effectiveness of our proposed iterated method in large-scale multiobjective optimization. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61903178,61906081,61906001,"U1804262"]
|
WOS研究方向 | Computer Science
; Engineering
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS记录号 | WOS:000703998200065
|
EI入藏号 | 20204109317077
|
EI主题词 | Evolutionary algorithms
; Iterative methods
|
EI分类号 | Optimization Techniques:921.5
; Numerical Methods:921.6
|
Scopus记录号 | 2-s2.0-85092067953
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185553 |
引用统计 |
被引频次[WOS]:23
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/187944 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | University Key Laboratory of Evolving Intelligent Systems of Guangdong Province,Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,518055,China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
He,Cheng,Cheng,Ran,Tian,Ye,et al. Iterated Problem Reformulation for Evolutionary Large-Scale Multiobjective Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-8.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Iterated Problem Ref(2240KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论