中文版 | English
题名

BSOGCN: Brain Storm Optimization Graph Convolutional Networks Based Heterogeneous Information Networks Embedding

作者
DOI
发表日期
2020-07-01
会议名称
IEEE Congress on Evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
ISBN
978-1-7281-6930-9
会议录名称
页码
1-7
会议日期
JUL 19-24, 2020
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Recently, Graph Convolutional Networks (GCNs) have shown great potential in the field of graph embedding. They map the nodes of the graph into the low dimensional vectors by aggregating the neighbor nodes' features information. However, most existing GCNs only focus on the homogeneous information networks instead of the heterogeneous information networks (HINs) with multiple types of nodes which are more common in the real world. Because the different types of neighbor nodes could have different impacts on the target nodes, it is difficult to manually design a proper neighbor nodes' features information aggregating weights. To address this problem, we propose a novel HINs embedding algorithm based on the brain storm optimization (BSO) algorithm and the graph convolutional network (GCN), called BSOGCN, which utilizes BSO to optimize the neighbor nodes' features information aggregating weights. It can be applied to the various HINs under various scenarios without any prior knowledge. The proposed method has been evaluated on both inductive and transductive node multi-class classification tasks on three real-world HINs datasets. The experimental results demonstrate that BSOGCN is competitive against other state-of-the-art methods.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Key RD Program of China[2017YFC0804003]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703998200044
EI入藏号
20204109316992
EI主题词
Graph theory ; Information services ; Graph structures ; Classification (of information) ; Graph neural networks ; Graph embeddings ; Convolution ; Convolutional neural networks
EI分类号
Precipitation:443.3 ; Information Theory and Signal Processing:716.1 ; Database Systems:723.3 ; Artificial Intelligence:723.4 ; Information Sources and Analysis:903.1 ; Information Services:903.4 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
Scopus记录号
2-s2.0-85092062644
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185532
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187946
专题工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Qu,Liang,Zhu,Huaisheng,Shi,Yuhui. BSOGCN: Brain Storm Optimization Graph Convolutional Networks Based Heterogeneous Information Networks Embedding[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-7.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qu,Liang]的文章
[Zhu,Huaisheng]的文章
[Shi,Yuhui]的文章
百度学术
百度学术中相似的文章
[Qu,Liang]的文章
[Zhu,Huaisheng]的文章
[Shi,Yuhui]的文章
必应学术
必应学术中相似的文章
[Qu,Liang]的文章
[Zhu,Huaisheng]的文章
[Shi,Yuhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。