题名 | BSOGCN: Brain Storm Optimization Graph Convolutional Networks Based Heterogeneous Information Networks Embedding |
作者 | |
DOI | |
发表日期 | 2020-07-01
|
会议名称 | IEEE Congress on Evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
|
ISBN | 978-1-7281-6930-9
|
会议录名称 | |
页码 | 1-7
|
会议日期 | JUL 19-24, 2020
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Recently, Graph Convolutional Networks (GCNs) have shown great potential in the field of graph embedding. They map the nodes of the graph into the low dimensional vectors by aggregating the neighbor nodes' features information. However, most existing GCNs only focus on the homogeneous information networks instead of the heterogeneous information networks (HINs) with multiple types of nodes which are more common in the real world. Because the different types of neighbor nodes could have different impacts on the target nodes, it is difficult to manually design a proper neighbor nodes' features information aggregating weights. To address this problem, we propose a novel HINs embedding algorithm based on the brain storm optimization (BSO) algorithm and the graph convolutional network (GCN), called BSOGCN, which utilizes BSO to optimize the neighbor nodes' features information aggregating weights. It can be applied to the various HINs under various scenarios without any prior knowledge. The proposed method has been evaluated on both inductive and transductive node multi-class classification tasks on three real-world HINs datasets. The experimental results demonstrate that BSOGCN is competitive against other state-of-the-art methods. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Key RD Program of China[2017YFC0804003]
|
WOS研究方向 | Computer Science
; Engineering
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS记录号 | WOS:000703998200044
|
EI入藏号 | 20204109316992
|
EI主题词 | Graph theory
; Information services
; Graph structures
; Classification (of information)
; Graph neural networks
; Graph embeddings
; Convolution
; Convolutional neural networks
|
EI分类号 | Precipitation:443.3
; Information Theory and Signal Processing:716.1
; Database Systems:723.3
; Artificial Intelligence:723.4
; Information Sources and Analysis:903.1
; Information Services:903.4
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
Scopus记录号 | 2-s2.0-85092062644
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185532 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/187946 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Qu,Liang,Zhu,Huaisheng,Shi,Yuhui. BSOGCN: Brain Storm Optimization Graph Convolutional Networks Based Heterogeneous Information Networks Embedding[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-7.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论