中文版 | English
题名

Effects of Local Mating in Inter-task Crossover on the Performance of Decomposition-based Evolutionary Multiobjective Multitask optimization Algorithms

作者
DOI
发表日期
2020-07-01
会议名称
IEEE Congress on Evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
ISBN
978-1-7281-6930-9
会议录名称
页码
1-8
会议日期
JUL 19-24, 2020
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Recently, Evolutionary Multiobjective Multitask optimization (EMMO) was proposed as a new research topic in the field of Evolutionary Multiobjective optimization (EMO). In contrast to conventional EMO algorithms, EMMO algorithms solve multiple multiobjective optimization problems (multiple tasks) in their single run. Most EMMO algorithms have the same number of populations as the number of tasks to be solved simultaneously, and each population corresponds to a different task. The main feature of EMMO algorithms is that offspring solutions are generated by not only intra-task crossover but also inter-task crossover. Local mating in intra-task crossover improves the search performance of EMO algorithms that use uniformly distributed weight vectors during a search, such as MOEA/D. Therefore, local mating in inter-task crossover is a promising idea for EMMO algorithms. In this paper, we propose a simple extension of MOEA/D for EMMO algorithms and a local mating method in inter-task crossover based on uniformly distributed weight vectors. Through computational experiments, we examine the effects of local mating in inter-task crossover on the search performance of the proposed algorithm. Experimental results show that the local mating improves the search performance of the proposed algorithm.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[61876075]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703998202128
EI入藏号
20204109316807
EI主题词
Evolutionary algorithms
EI分类号
Optimization Techniques:921.5
Scopus记录号
2-s2.0-85092060047
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185871
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187947
专题工学院_计算机科学与工程系
作者单位
1.Graduate School of Engineering Osaka Prefecture University,Department of Computer Science and Intelligent Systems,Osaka,Japan
2.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,China
推荐引用方式
GB/T 7714
Hashimoto,Ryuichi,Urita,Toshiki,Masuyama,Naoki,et al. Effects of Local Mating in Inter-task Crossover on the Performance of Decomposition-based Evolutionary Multiobjective Multitask optimization Algorithms[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hashimoto,Ryuichi]的文章
[Urita,Toshiki]的文章
[Masuyama,Naoki]的文章
百度学术
百度学术中相似的文章
[Hashimoto,Ryuichi]的文章
[Urita,Toshiki]的文章
[Masuyama,Naoki]的文章
必应学术
必应学术中相似的文章
[Hashimoto,Ryuichi]的文章
[Urita,Toshiki]的文章
[Masuyama,Naoki]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。