中文版 | English
题名

In Vivo Computation for Tumor Sensitization and Targeting at Different Tumor Growth Stages

作者
DOI
发表日期
2020-07-01
会议名称
IEEE Congress on Evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
ISBN
978-1-7281-6930-9
会议录名称
页码
1-6
会议日期
JUL 19-24, 2020
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
We look into the novel paradigm of in vivo computation for tumor sensitization and targeting (TST), which aims at detecting a tumor by considering TST as a computational process. Nanorobots are utilized as computational agents to search for the tumor in the high-risk tissue with the aided knowledge of the tumor-triggered biological gradient field (BGF), which is similar to an optimization process. All our previous work is about the detection of tumor with a priori size, which is not convincing enough as the exact size of the tumor targeted cannot be obtained in advance. We focus on the TST for tumor with unknown size by considering the tumor growth process in this paper. The weak priority evolution strategy (WP-ES) based in vivo computational algorithm proposed in our previous work is utilized for the TST at three tumor growth stages for two representative landscapes by considering the nanorobots' lifespans and other realistic constraints. Furthermore, we propose the 'tension and relaxation (T-R)' principle, which is used for the actuating of nanorobots in the TST process for the tumor with unknown size. The experimental results demonstrate the effectiveness of the proposed in vivo computational algorithm and principle for the TST at different tumor growth stages.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703998202087
EI入藏号
20204109317210
EI主题词
Evolutionary algorithms ; Intelligent robots ; Swarm intelligence ; Biology ; Nanorobotics ; Nanorobots
EI分类号
Biomedical Engineering:461.1 ; Biological Materials and Tissue Engineering:461.2 ; Biology:461.9 ; Artificial Intelligence:723.4 ; Robotics:731.5 ; Robot Applications:731.6 ; Nanotechnology:761
Scopus记录号
2-s2.0-85092059609
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185830
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187948
专题工学院_计算机科学与工程系
作者单位
1.Harbin Institute of Technology,Harbin,China
2.University of Electronic Science and Technology of China,Chengdu,China
3.University of Waikato,School of Engineering,Hamilton,New Zealand
4.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,China
推荐引用方式
GB/T 7714
Shi,Shaolong,Chen,Yifan,Gong,Zheng,et al. In Vivo Computation for Tumor Sensitization and Targeting at Different Tumor Growth Stages[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-6.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shi,Shaolong]的文章
[Chen,Yifan]的文章
[Gong,Zheng]的文章
百度学术
百度学术中相似的文章
[Shi,Shaolong]的文章
[Chen,Yifan]的文章
[Gong,Zheng]的文章
必应学术
必应学术中相似的文章
[Shi,Shaolong]的文章
[Chen,Yifan]的文章
[Gong,Zheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。