中文版 | English
题名

Online Parameter Tuned SAHiD Algorithm for Capacitated Arc Routing Problems

作者
通讯作者Yao,Xin
DOI
发表日期
2020-07-01
会议名称
2020 IEEE Congress on Evolutionary Computation
ISBN
978-1-7281-6930-9
会议录名称
页码
1-8
会议日期
19-24 July 2020
会议地点
Glasgow, UK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

The Capacitated Arc Routing Problem (CARP) is a general and challenging arc routing problem. As the problem size increasing, exact methods are not applicable, and heuristic and meta-heuristic algorithms are promising approaches to solve it. To obtain good performance, parameter values of heuristics or meta-heuristics should be properly set. In recent years, automatic parameter tuning, which includes off-line and online parameter tuning, has attracted considerable attention in the evolutionary computation community. At present, parameters are usually determined through simple off-line parameter tuning, such as empirical analysis or grid search, when designing algorithms for CARP. However, using off-line parameter tuning on CARP has some disadvantages, among which the computational cost is the serious one. This work proposed an online parameter tuning approach using exponential recency-weighted kernel density estimation (ERW-KDE), and combines it with the SAHiD algorithm, which is an hierarchical decomposition based algorithm for CARP, to constitute the online parameter tuned SAHiD (OPT-SAHiD) algorithm. The experimental results show that OPT-SAHiD significantly outperforms the compared algorithms on two CARP benchmark sets owing to the proposed online automatic parameter tuning approach. The proposed online automatic parameter tuning approach based on ERW-KDE not only improves the performance of SAHiD algorithm, but also removes the additional computational overhead required for offline parameter tuning.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Guangdong Basic and Applied Basic Research Foundation[2019A1515110575] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Shenzhen Science and Technology Program[KQTD2016112514355531] ; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703998201017
EI入藏号
20204109317161
EI主题词
Evolutionary algorithms ; Parameter estimation ; Routing algorithms ; Statistics ; Heuristic methods
EI分类号
Computer Software, Data Handling and Applications:723 ; Computer Programming:723.1 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85092057966
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185627
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187949
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2.School of Computer Science, Wuhan University, Wuhan 430072, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Huang,Changwu,Li,Yuanxiang,Yao,Xin. Online Parameter Tuned SAHiD Algorithm for Capacitated Arc Routing Problems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-8.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Online Parameter Tun(1414KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang,Changwu]的文章
[Li,Yuanxiang]的文章
[Yao,Xin]的文章
百度学术
百度学术中相似的文章
[Huang,Changwu]的文章
[Li,Yuanxiang]的文章
[Yao,Xin]的文章
必应学术
必应学术中相似的文章
[Huang,Changwu]的文章
[Li,Yuanxiang]的文章
[Yao,Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。