题名 | Online Parameter Tuned SAHiD Algorithm for Capacitated Arc Routing Problems |
作者 | |
通讯作者 | Yao,Xin |
DOI | |
发表日期 | 2020-07-01
|
会议名称 | 2020 IEEE Congress on Evolutionary Computation
|
ISBN | 978-1-7281-6930-9
|
会议录名称 | |
页码 | 1-8
|
会议日期 | 19-24 July 2020
|
会议地点 | Glasgow, UK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | The Capacitated Arc Routing Problem (CARP) is a general and challenging arc routing problem. As the problem size increasing, exact methods are not applicable, and heuristic and meta-heuristic algorithms are promising approaches to solve it. To obtain good performance, parameter values of heuristics or meta-heuristics should be properly set. In recent years, automatic parameter tuning, which includes off-line and online parameter tuning, has attracted considerable attention in the evolutionary computation community. At present, parameters are usually determined through simple off-line parameter tuning, such as empirical analysis or grid search, when designing algorithms for CARP. However, using off-line parameter tuning on CARP has some disadvantages, among which the computational cost is the serious one. This work proposed an online parameter tuning approach using exponential recency-weighted kernel density estimation (ERW-KDE), and combines it with the SAHiD algorithm, which is an hierarchical decomposition based algorithm for CARP, to constitute the online parameter tuned SAHiD (OPT-SAHiD) algorithm. The experimental results show that OPT-SAHiD significantly outperforms the compared algorithms on two CARP benchmark sets owing to the proposed online automatic parameter tuning approach. The proposed online automatic parameter tuning approach based on ERW-KDE not only improves the performance of SAHiD algorithm, but also removes the additional computational overhead required for offline parameter tuning. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Guangdong Basic and Applied Basic Research Foundation[2019A1515110575]
; Guangdong Provincial Key Laboratory[2020B121201001]
; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386]
; Shenzhen Science and Technology Program[KQTD2016112514355531]
; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
|
WOS研究方向 | Computer Science
; Engineering
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS记录号 | WOS:000703998201017
|
EI入藏号 | 20204109317161
|
EI主题词 | Evolutionary algorithms
; Parameter estimation
; Routing algorithms
; Statistics
; Heuristic methods
|
EI分类号 | Computer Software, Data Handling and Applications:723
; Computer Programming:723.1
; Mathematical Statistics:922.2
|
Scopus记录号 | 2-s2.0-85092057966
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185627 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/187949 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 2.School of Computer Science, Wuhan University, Wuhan 430072, China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Huang,Changwu,Li,Yuanxiang,Yao,Xin. Online Parameter Tuned SAHiD Algorithm for Capacitated Arc Routing Problems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-8.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Online Parameter Tun(1414KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论