中文版 | English
题名

On the Normalization in Evolutionary Multi-Modal Multi-Objective Optimization

作者
DOI
发表日期
2020-07-01
会议名称
IEEE Congress on Evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
ISBN
978-1-7281-6930-9
会议录名称
页码
1-8
会议日期
JUL 19-24, 2020
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Multi-modal multi-objective optimization problems may have different Pareto optimal solutions with the same objective vector. A number of evolutionary multi-modal multiobjective algorithms have been developed to solve these problems. They aim to search for a Pareto optimal solution set with good diversity in both the objective and decision spaces. Although the normalization in both the objective and decision spaces is very important for these algorithms, there are few studies on this topic. In this paper, we investigate the effect of four normalization methods on two evolutionary multi-modal multiobjective algorithms. Six distance minimization problems are chosen as test problems. The experimental results show that the effect of normalization in evolutionary multi-modal multiobjective optimization is algorithm- and problem-dependent.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[61876075,61803192] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Shenzhen Science and Technology Program[KQTD2016112514355531] ; Program for University Key Laboratory of Guangdong Province[2017KSYS008] ; Japan Society for the Promotion of Science (JSPS) KAKENHI[JP19K20358]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703998203028
EI入藏号
20204109316466
EI主题词
Evolutionary algorithms ; Optimal systems ; Pareto principle
EI分类号
Optimization Techniques:921.5 ; Systems Science:961
Scopus记录号
2-s2.0-85092056775
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185899
引用统计
被引频次[WOS]:12
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187950
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Osaka Prefecture University,Department of Computer Science and Intelligent Systems,Sakai, Osaka,599-8531,Japan
2.Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Shenzhen,518055,China
3.Oklahoma State University,School of Electrical and Computer Engineering,Stillwater,74078,United States
4.Liaocheng University,School of Computer Science,Liaocheng,252059,China
推荐引用方式
GB/T 7714
Liu,Yiping,Ishibuchi,Hisao,Yen,Gary G.,et al. On the Normalization in Evolutionary Multi-Modal Multi-Objective Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Yiping]的文章
[Ishibuchi,Hisao]的文章
[Yen,Gary G.]的文章
百度学术
百度学术中相似的文章
[Liu,Yiping]的文章
[Ishibuchi,Hisao]的文章
[Yen,Gary G.]的文章
必应学术
必应学术中相似的文章
[Liu,Yiping]的文章
[Ishibuchi,Hisao]的文章
[Yen,Gary G.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。