题名 | On the Normalization in Evolutionary Multi-Modal Multi-Objective Optimization |
作者 | |
DOI | |
发表日期 | 2020-07-01
|
会议名称 | IEEE Congress on Evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
|
ISBN | 978-1-7281-6930-9
|
会议录名称 | |
页码 | 1-8
|
会议日期 | JUL 19-24, 2020
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Multi-modal multi-objective optimization problems may have different Pareto optimal solutions with the same objective vector. A number of evolutionary multi-modal multiobjective algorithms have been developed to solve these problems. They aim to search for a Pareto optimal solution set with good diversity in both the objective and decision spaces. Although the normalization in both the objective and decision spaces is very important for these algorithms, there are few studies on this topic. In this paper, we investigate the effect of four normalization methods on two evolutionary multi-modal multiobjective algorithms. Six distance minimization problems are chosen as test problems. The experimental results show that the effect of normalization in evolutionary multi-modal multiobjective optimization is algorithm- and problem-dependent. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61876075,61803192]
; Guangdong Provincial Key Laboratory[2020B121201001]
; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386]
; Shenzhen Science and Technology Program[KQTD2016112514355531]
; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
; Japan Society for the Promotion of Science (JSPS) KAKENHI[JP19K20358]
|
WOS研究方向 | Computer Science
; Engineering
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Mathematical & Computational Biology
; Operations Research & Management Science
|
WOS记录号 | WOS:000703998203028
|
EI入藏号 | 20204109316466
|
EI主题词 | Evolutionary algorithms
; Optimal systems
; Pareto principle
|
EI分类号 | Optimization Techniques:921.5
; Systems Science:961
|
Scopus记录号 | 2-s2.0-85092056775
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9185899 |
引用统计 |
被引频次[WOS]:12
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/187950 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Osaka Prefecture University,Department of Computer Science and Intelligent Systems,Sakai, Osaka,599-8531,Japan 2.Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Shenzhen,518055,China 3.Oklahoma State University,School of Electrical and Computer Engineering,Stillwater,74078,United States 4.Liaocheng University,School of Computer Science,Liaocheng,252059,China |
推荐引用方式 GB/T 7714 |
Liu,Yiping,Ishibuchi,Hisao,Yen,Gary G.,et al. On the Normalization in Evolutionary Multi-Modal Multi-Objective Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-8.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论