题名 | Deep Learning with Skip Connection Attention for Choroid Layer Segmentation in OCT Images |
作者 | |
DOI | |
发表日期 | 2020-07-01
|
会议名称 | 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
|
ISSN | 1557-170X
|
ISBN | 978-1-7281-1991-5
|
会议录名称 | |
卷号 | 2020-July
|
页码 | 1641-1645
|
会议日期 | 20-24 July 2020
|
会议地点 | Montreal, QC, Canada
|
摘要 | Since the thickness and shape of the choroid layer are indicators for the diagnosis of several ophthalmic diseases, the choroid layer segmentation is an important task. There exist many challenges in segmentation of the choroid layer. In this paper, in view of the lack of context information due to the ambiguous boundaries, and the subsequent inconsistent predictions of the same category targets ascribed to the lack of context information or the large regions, a novel Skip Connection Attention (SCA) module which is integrated into the U-Shape architecture is proposed to improve the precision of choroid layer segmentation in Optical Coherence Tomography (OCT) images. The main function of the SCA module is to capture the global context in the highest level to provide the decoder with stage-by-stage guidance, to extract more context information and generate more consistent predictions for the same class targets. By integrating the SCA module into the U-Net and CE-Net, we show that the module improves the accuracy of the choroid layer segmentation. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20203809206758
|
EI主题词 | Image segmentation
; Diagnosis
; Deep learning
; Image enhancement
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Medicine and Pharmacology:461.6
; Optical Devices and Systems:741.3
|
Scopus记录号 | 2-s2.0-85091047539
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9175631 |
引用统计 |
被引频次[WOS]:11
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/187962 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Shanghai University,School of Mechatronic Engineering and Automation,Shanghai,China 2.Cixi Institute of Biomedical Engineering,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo,China 3.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China 4.Ubtech Robotics Corp,Ubtech Research,Shenzhen,China 5.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Mao,Xiaoqian,Zhao,Yitian,Chen,Bang,et al. Deep Learning with Skip Connection Attention for Choroid Layer Segmentation in OCT Images[C],2020:1641-1645.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Deep_Learning_with_S(4255KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论