题名 | Probability distribution guided optic disc and cup segmentation from fundus images |
作者 | |
通讯作者 | Tang,Xiaoying |
DOI | |
发表日期 | 2020-07-01
|
会议名称 | 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
|
ISSN | 1557-170X
|
ISBN | 978-1-7281-1991-5
|
会议录名称 | |
卷号 | 2020-July
|
页码 | 1976-1979
|
会议日期 | 2020
|
会议地点 | Montreal, QC, Canada
|
摘要 | In this paper, we proposed and validated a probability distribution guided network for segmenting optic disc (OD) and optic cup (OC) from fundus images. Uncertainty is inevitable in deep learning, as induced by different sensors, insufficient samples, and inaccurate labeling. Since the input data and the corresponding ground truth label may be inaccurate, they may actually follow some potential distribution. In this study, a variational autoencoder (VAE) based network was proposed to estimate the joint distribution of the input image and the corresponding segmentation (both the ground truth segmentation and the predicted segmentation), making the segmentation network learn not only pixel-wise information but also semantic probability distribution. Moreover, we designed a building block, namely the Dilated Inception Block (DIB), for a better generalization of the model and a more effective extraction of multi-scale features. The proposed method was compared to several existing state-of-the-art methods. Superior segmentation performance has been observed over two datasets (ORIGA and REFUGE), with the mean Dice overlap coefficients being 96.57% and 95.81% for OD and 88.46% and 88.91% for OC. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20203809207647
|
EI主题词 | Semantics
; Deep learning
; Semantic Segmentation
; Computer vision
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Artificial Intelligence:723.4
; Computer Applications:723.5
; Vision:741.2
; Probability Theory:922.1
|
Scopus记录号 | 2-s2.0-85091001635
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9176394 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/187965 |
专题 | 工学院_电子与电气工程系 |
作者单位 | Southern University of Science and Technology,Department of Electrical and Electronic Engineering,Shenzhen,China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Cheng,Pujin,Lyu,Junyan,Huang,Yijin,et al. Probability distribution guided optic disc and cup segmentation from fundus images[C],2020:1976-1979.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Probability distribu(668KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论