中文版 | English
题名

Smart Sensing for Container Trucks

作者
通讯作者Wang,Jianping
DOI
发表日期
2020-07-01
ISBN
978-1-7281-8276-6
会议录名称
页码
1-7
会议日期
24-25 July 2020
会议地点
Deqing, China
摘要
Container logistics is a typical logistics model with complex business processes. In recent years, operation optimization in logistics is identified as significant in cutting labor costs and boosting productivity. To implement operation optimization in container logistics, the accurate load measuring and operational situation information are the prerequisites. However, the current labor-driven measurement and situation recognition suffer from inevitable delays, errors, and expenses. To tackle these challenges, the authors propose a smart sensing system that intelligently achieves the container load measurement and operational situation recognition. In this paper, the authors present a novel approach for load measurement and the design of an edge-computing-powered controller. The kNN (k-Nearest Neigh-bor) has been introduced to develop an Operational Situation Recognition (OSR) model. The authors realize and implement the smart sensing system in the production environment. Rigorous analysis and prototype evaluations demonstrate the effectiveness of the proposed system.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20203609138781
EI主题词
Trucks ; Containers ; Wages ; Automobiles ; Nearest neighbor search
EI分类号
Automobiles:662.1 ; Heavy Duty Motor Vehicles:663.1 ; Artificial Intelligence:723.4 ; Personnel:912.4 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85090126825
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9160480
引用统计
被引频次[WOS]:11
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187972
专题未来网络研究院
作者单位
1.City University of Hong Kong,Department of Computer Science,Kowloon,Hong Kong
2.Carnegie Mellon University,Department of Electrical and Computer Engineering,Pittsburgh,United States
3.Research Center for Network Communication,Peng Cheng Laboratory,Shenzhen,China
4.School of Computer Science and Technology,Wuhan University of Technology,Wuhan,China
5.Institute of Future Networks,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Xu,Chengyuan,Zhao,Bin,Yang,Rongwei,et al. Smart Sensing for Container Trucks[C],2020:1-7.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu,Chengyuan]的文章
[Zhao,Bin]的文章
[Yang,Rongwei]的文章
百度学术
百度学术中相似的文章
[Xu,Chengyuan]的文章
[Zhao,Bin]的文章
[Yang,Rongwei]的文章
必应学术
必应学术中相似的文章
[Xu,Chengyuan]的文章
[Zhao,Bin]的文章
[Yang,Rongwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。