中文版 | English
题名

Bio-inspired self-regulated in-vivo computation for smart cancer detection

作者
DOI
发表日期
2020-07-01
会议名称
IEEE International Conference on Nanotechnology (IEEE-NANO)
ISSN
1944-9399
EISSN
1944-9380
ISBN
978-1-7281-8265-0
会议录名称
卷号
2020-July
页码
304-309
会议日期
29-31 July 2020
会议地点
Montreal, QC, Canada
摘要

This paper highlights a novel knowledge-less bio-inspired systemic targeting strategy (STS) for tumor homing in complex human vasculature. We propose that biological organisms at very small scale such as nanoparticles can perform deterministic tasks when they aggregate and migrate together. We aim to demonstrate through computational experiments that nanoparticles which can act as contrast agents, use tumor triggered bio-physical gradients collectively to move towards the tumor and deposit themselves on it to highlight the disease area hence increasing the diagnostic efficiency of different existing medical imaging techniques. Despite the fact that individual nanoparticles have very limited locomotive and computational capability, we show that still when combined together, they can perform complex tasks such as obstacle avoidance while detecting target. We believe that our work motivates a novel non-centralized self-dependent approach for tumor targeting amplification.

关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20203809208295
EI主题词
Diagnosis ; Diseases ; Biomimetics ; Medical Imaging ; Nanoparticles
EI分类号
Biomedical Engineering:461.1 ; Biological Materials And Tissue Engineering:461.2 ; Medicine And Pharmacology:461.6 ; Biotechnology:461.8 ; Biology:461.9 ; Imaging Techniques:746 ; Nanotechnology:761 ; Solid State Physics:933
Scopus记录号
2-s2.0-85091032214
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9183570
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187973
专题工学院_机械与能源工程系
工学院_计算机科学与工程系
作者单位
1.School of Engineering,University of Waikato,Hamilton,New Zealand
2.School of Computing and Mathematics,University of Waikato,Hamilton,New Zealand
3.Harbin Institute of Technology,Harbin,China
4.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,China
5.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,China
6.School of Engineering and the School of Computing and Mathematics,University of Waikato,Hamilton,New Zealand
推荐引用方式
GB/T 7714
Ali,Muhammad,McGrath,Nicholas,Shi,Shaolong,et al. Bio-inspired self-regulated in-vivo computation for smart cancer detection[C],2020:304-309.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Bio-inspired_Self-re(632KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ali,Muhammad]的文章
[McGrath,Nicholas]的文章
[Shi,Shaolong]的文章
百度学术
百度学术中相似的文章
[Ali,Muhammad]的文章
[McGrath,Nicholas]的文章
[Shi,Shaolong]的文章
必应学术
必应学术中相似的文章
[Ali,Muhammad]的文章
[McGrath,Nicholas]的文章
[Shi,Shaolong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。