中文版 | English
题名

What is a good direction vector set for the R2-based hypervolume contribution approximation

作者
通讯作者Ishibuchi,Hisao
DOI
发表日期
2020-06-25
会议录名称
页码
524-532
摘要
The hypervolume contribution is an important concept in hypervolume-based evolutionary multi-objective optimization algorithms. It describes the loss of the hypervolume when a solution is removed from the current population. Since its calculation is #P-hard in the number of objectives, its approximation is necessary for many-objective optimization problems. Recently, an R2-based hypervolume contribution approximation method was proposed. This method relies on a set of direction vectors for the approximation. However, the influence of different direction vector generation methods on the approximation quality has not been studied yet. This paper aims to investigate this issue. Five direction vector generation methods are investigated, including Das and Dennis's method (DAS), unit normal vector method (UNV), JAS method, maximally sparse selection method with DAS (MSS-D), and maximally sparse selection method with UNV (MSS-U). Experimental results suggest that the approximation quality strongly depends on the direction vector generation method. The JAS and UNV methods show the best performance whereas the DAS method shows the worst performance. The reasons behind the results are also analyzed.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20204009295559
EI主题词
Vectors ; Satellites ; Evolutionary algorithms
EI分类号
Satellites:655.2 ; Algebra:921.1 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85091794650
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187978
专题工学院_计算机科学与工程系
作者单位
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Nan,Yang,Shang,Ke,Ishibuchi,Hisao. What is a good direction vector set for the R2-based hypervolume contribution approximation[C],2020:524-532.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Nan,Yang]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
百度学术
百度学术中相似的文章
[Nan,Yang]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
必应学术
必应学术中相似的文章
[Nan,Yang]的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。