中文版 | English
题名

Interactive evolution and exploration within latent level-design space of generative adversarial networks

作者
DOI
发表日期
2020-06-25
会议录名称
页码
148-156
摘要
Generative Adversarial Networks (GANs) are an emerging form of indirect encoding. The GAN is trained to induce a latent space on training data, and a real-valued evolutionary algorithm can search that latent space. Such Latent Variable Evolution (LVE) has recently been applied to game levels. However, it is hard for objective scores to capture level features that are appealing to players. Therefore, this paper introduces a tool for interactive LVE of tile-based levels for games. The tool also allows for direct exploration of the latent dimensions, and allows users to play discovered levels. The tool works for a variety of GAN models trained for both Super Mario Bros. and The Legend of Zelda, and is easily generalizable to other games. A user study shows that both the evolution and latent space exploration features are appreciated, with a slight preference for direct exploration, but combining these features allows users to discover even better levels. User feedback also indicates how this system could eventually grow into a commercial design tool, with the addition of a few enhancements.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20204009295505
EI主题词
Human computer interaction ; Space research ; Interactive computer graphics
EI分类号
Space Research:656.2 ; Artificial Intelligence:723.4 ; Computer Applications:723.5
Scopus记录号
2-s2.0-85091745122
来源库
Scopus
引用统计
被引频次[WOS]:24
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187982
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Southwestern University,Georgetown,United States
2.Modl.ai,Copenhagen,Denmark
3.Southern University of Science and Technology,Shenzhen,China
4.Queen Mary University of London,London,United Kingdom
5.IT University of Copenhagen,Copenhagen,Denmark
推荐引用方式
GB/T 7714
Schrum,Jacob,Gutierrez,Jake,Volz,Vanessa,et al. Interactive evolution and exploration within latent level-design space of generative adversarial networks[C],2020:148-156.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Schrum,Jacob]的文章
[Gutierrez,Jake]的文章
[Volz,Vanessa]的文章
百度学术
百度学术中相似的文章
[Schrum,Jacob]的文章
[Gutierrez,Jake]的文章
[Volz,Vanessa]的文章
必应学术
必应学术中相似的文章
[Schrum,Jacob]的文章
[Gutierrez,Jake]的文章
[Volz,Vanessa]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。