中文版 | English
题名

FedBC: Blockchain-based Decentralized Federated Learning

作者
DOI
发表日期
2020-06-01
ISBN
978-1-7281-7006-0
会议录名称
页码
217-221
会议日期
27-29 June 2020
会议地点
Dalian, China
摘要
Federated learning enables participants to collaborate on model training without directly exchanging raw data. Existing federated learning methods often follow the parameter server architecture, using third-party collaborators to provide aggregation and key management. In this case, the central node obtains information uploaded by other nodes. Studies have shown that with this information, the central node can infer important information, which leads to data privacy leakage. In addition, the failure on the server node can also cause the entire system to fail. We designed a completely decentralized federated learning framework based on blockchain, thereby avoiding the privacy and failure risk of the centralized structure. Moreover, we develop the corresponding model training approach. Compared with the existing methods, our framework performs better in terms of accuracy, robustness, and privacy.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20204109327732
EI主题词
Deep learning ; Data privacy ; Learning systems
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Database Systems:723.3
Scopus记录号
2-s2.0-85092187252
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9182705
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/187986
专题南方科技大学
未来网络研究院
作者单位
1.Tsinghua University,Beijing,China
2.Shenzhen Technology University,Shenzhen,China
3.Southern University of Science and Technology,Peng Cheng Laboratory,Shenzhen,China
推荐引用方式
GB/T 7714
Wu,Xin,Wang,Zhi,Zhao,Jian,et al. FedBC: Blockchain-based Decentralized Federated Learning[C],2020:217-221.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wu,Xin]的文章
[Wang,Zhi]的文章
[Zhao,Jian]的文章
百度学术
百度学术中相似的文章
[Wu,Xin]的文章
[Wang,Zhi]的文章
[Zhao,Jian]的文章
必应学术
必应学术中相似的文章
[Wu,Xin]的文章
[Wang,Zhi]的文章
[Zhao,Jian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。