题名 | FedBC: Blockchain-based Decentralized Federated Learning |
作者 | |
DOI | |
发表日期 | 2020-06-01
|
ISBN | 978-1-7281-7006-0
|
会议录名称 | |
页码 | 217-221
|
会议日期 | 27-29 June 2020
|
会议地点 | Dalian, China
|
摘要 | Federated learning enables participants to collaborate on model training without directly exchanging raw data. Existing federated learning methods often follow the parameter server architecture, using third-party collaborators to provide aggregation and key management. In this case, the central node obtains information uploaded by other nodes. Studies have shown that with this information, the central node can infer important information, which leads to data privacy leakage. In addition, the failure on the server node can also cause the entire system to fail. We designed a completely decentralized federated learning framework based on blockchain, thereby avoiding the privacy and failure risk of the centralized structure. Moreover, we develop the corresponding model training approach. Compared with the existing methods, our framework performs better in terms of accuracy, robustness, and privacy. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20204109327732
|
EI主题词 | Deep learning
; Data privacy
; Learning systems
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Database Systems:723.3
|
Scopus记录号 | 2-s2.0-85092187252
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9182705 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/187986 |
专题 | 南方科技大学 未来网络研究院 |
作者单位 | 1.Tsinghua University,Beijing,China 2.Shenzhen Technology University,Shenzhen,China 3.Southern University of Science and Technology,Peng Cheng Laboratory,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Wu,Xin,Wang,Zhi,Zhao,Jian,et al. FedBC: Blockchain-based Decentralized Federated Learning[C],2020:217-221.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论