中文版 | English
题名

Hijacking Tracker: A Powerful Adversarial Attack on Visual Tracking

作者
通讯作者Jiang,Yong
DOI
发表日期
2020-05-01
ISSN
1520-6149
ISBN
978-1-5090-6632-2
会议录名称
卷号
2020-May
页码
2897-2901
会议日期
4-8 May 2020
会议地点
Barcelona, Spain
摘要
Visual object tracking has made important breakthroughs with the assistance of deep learning models. Unfortunately, recent research has clearly proved that deep learning models are vulnerable to malicious adversarial attacks, which mislead the models making wrong decisions by perturbing the input image. The threat to the models alerts us to pay attention to the model security of deep learning-based tracking algorithms. Therefore, we study the adversarial attacks against advanced trackers based on deep learning to better identify the vulnerability of tracking algorithms. In this paper, we propose to add slight adversarial perturbations to the input image by an inconspicuous but powerful attack strategy-hijacking algorithm. Specifically, the hijacking strategy misleads trackers in two aspects: one is shape hijacking that changes the shape of the model output; the other is position hijacking that gradually pushes the output to any position in the image frame. Besides, we further propose an adaptive optimization approach to integrate two hijacking mechanisms efficiently. Eventually, the hijacking algorithm results in fooling the tracker to track the wrong target gradually. The experimental results demonstrate the powerful attack ability of our method-quickly hijacking state-of-the-art trackers and reducing the accuracy of these models by more than 90% on OTB2015.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20203309041180
EI主题词
Learning systems ; Tracking (position) ; Learning algorithms
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Machine Learning:723.4.2
Scopus记录号
2-s2.0-85089230540
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9053574
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/188001
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Tsinghua University,Dept. of Computer Science and Technology,China
2.Sch. of Electronic and Computer Engineering,Shenzhen Graduate School of Peking University,China
3.Peng Cheng Laboratory,PCL Research Center of Networks and Communications,Shenzhen,China
4.Southern University of Science and Technology,Dept. of Computer Science and Engineering,Shenzhen,China
推荐引用方式
GB/T 7714
Yan,Xiyu,Chen,Xuesong,Jiang,Yong,et al. Hijacking Tracker: A Powerful Adversarial Attack on Visual Tracking[C],2020:2897-2901.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yan,Xiyu]的文章
[Chen,Xuesong]的文章
[Jiang,Yong]的文章
百度学术
百度学术中相似的文章
[Yan,Xiyu]的文章
[Chen,Xuesong]的文章
[Jiang,Yong]的文章
必应学术
必应学术中相似的文章
[Yan,Xiyu]的文章
[Chen,Xuesong]的文章
[Jiang,Yong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。