题名 | PDNet: A convolutional neural network has potential to be deployed on small intelligent devices for arrhythmia diagnosis |
作者 | |
通讯作者 | Zhang,Xiaoqing |
发表日期 | 2020
|
DOI | |
发表期刊 | |
ISSN | 1526-1492
|
EISSN | 1526-1506
|
卷号 | 125期号:1页码:365-382 |
摘要 | Heart arrhythmia is a group of irregular heartbeat conditions and is usually detected by electrocardiograms (ECG) signals. Over the past years, deep learning methods have been developed to classify different types of heart arrhythmias through ECG based on computer-aided diagnosis systems (CADs), but these deep learning methods usually cannot trade-off between classification performance and parameters of deep learning methods. To tackle this problem, this work proposes a convolutional neural network (CNN) model named PDNet to recognize different types of heart arrhythmias efficiently. In the PDNet, a convolutional block named PDblock is devised, which is comprised of a pointwise convolutional layer and a depthwise convolutional layer. Furthermore, an improved loss function is utilized to improve the results of heart arrhythmias classification. To verify the proposed CNN model, extensive experiments are conducted on public MIT-BIH ECG databases. The experimental results demonstrate that the proposed PDNet achieves an accuracy of 98.2% accuracy and outperforms state-of-the-art methods about 2%. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
WOS研究方向 | Engineering
; Mathematics
|
WOS类目 | Engineering, Multidisciplinary
; Mathematics, Interdisciplinary Applications
|
WOS记录号 | WOS:000573973000005
|
出版者 | |
EI入藏号 | 20203909226860
|
EI主题词 | Deep learning
; Economic and social effects
; Learning systems
; Diseases
; Heart
; Convolutional neural networks
; Neural network models
; Computer aided diagnosis
; Computer aided instruction
; Convolution
|
EI分类号 | Biomedical Engineering:461.1
; Biological Materials and Tissue Engineering:461.2
; Ergonomics and Human Factors Engineering:461.4
; Biomedical Equipment, General:462.1
; Information Theory and Signal Processing:716.1
; Artificial Intelligence:723.4
; Computer Applications:723.5
; Education:901.2
; Social Sciences:971
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85091298250
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:8
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/188042 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China 2.Cooperative Innovtion Center of Internet Healthcare,Zhengzhou University,Zhengzhou,450052,China 3.College of Computer Science and Technology,Huaqiao University,Xiamen,361021,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Yang,Fei,Zhang,Xiaoqing,Zhu,Yong. PDNet: A convolutional neural network has potential to be deployed on small intelligent devices for arrhythmia diagnosis[J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES,2020,125(1):365-382.
|
APA |
Yang,Fei,Zhang,Xiaoqing,&Zhu,Yong.(2020).PDNet: A convolutional neural network has potential to be deployed on small intelligent devices for arrhythmia diagnosis.CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES,125(1),365-382.
|
MLA |
Yang,Fei,et al."PDNet: A convolutional neural network has potential to be deployed on small intelligent devices for arrhythmia diagnosis".CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES 125.1(2020):365-382.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论