中文版 | English
题名

Improving sampling in evolution strategies through mixture-based distributions built from past problem instances

作者
通讯作者Friess,Stephen
DOI
发表日期
2020
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12269 LNCS
页码
583-596
摘要
The notion of learning from different problem instances, although an old and known one, has in recent years regained popularity within the optimization community. Notable endeavors have been drawing inspiration from machine learning methods as a means for algorithm selection and solution transfer. However, surprisingly approaches which are centered around internal sampling models have not been revisited. Even though notable algorithms have been established in the last decades. In this work, we progress along this direction by investigating a method that allows us to learn an evolutionary search strategy reflecting rough characteristics of a fitness landscape. This latter model of a search strategy is represented through a flexible mixture-based distribution, which can subsequently be transferred and adapted for similar problems of interest. We validate this approach in two series of experiments in which we first demonstrate the efficacy of the recovered distributions and subsequently investigate the transfer with a systematic from the literature to generate benchmarking scenarios.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20203909228666
EI主题词
Machine learning ; Learning algorithms ; Optimization ; Evolutionary algorithms
EI分类号
Artificial Intelligence:723.4 ; Machine Learning:723.4.2 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85091287808
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/188043
专题工学院_计算机科学与工程系
作者单位
1.CERCIA,School of Computer Science,University of Birmingham,Birmingham,United Kingdom
2.Honda Research Institute Europe,Offenbach a.M.,Carl-Legien-Str. 30,63073,Germany
3.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Friess,Stephen,Tiňo,Peter,Menzel,Stefan,et al. Improving sampling in evolution strategies through mixture-based distributions built from past problem instances[C],2020:583-596.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Friess,Stephen]的文章
[Tiňo,Peter]的文章
[Menzel,Stefan]的文章
百度学术
百度学术中相似的文章
[Friess,Stephen]的文章
[Tiňo,Peter]的文章
[Menzel,Stefan]的文章
必应学术
必应学术中相似的文章
[Friess,Stephen]的文章
[Tiňo,Peter]的文章
[Menzel,Stefan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。