中文版 | English
题名

Multi-objective magnitude-based pruning for latency-aware deep neural network compression

作者
通讯作者Tang,Ke
DOI
发表日期
2020
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12269 LNCS
页码
470-483
摘要
Layer-wise magnitude-based pruning is a popular method for Deep Neural Network (DNN) compression. It has the potential to reduce the latency for an inference made by a DNN by pruning connects in the network, which prompts the application of DNNs to tasks with real-time operation requirements, such as self-driving vehicles, video detection and tracking. However, previous methods mainly use the compression rate as a proxy for the latency, without explicitly accounting for latency in the training of the compressed network. This paper presents a new layer-wise magnitude-based pruning method, namely Multi-objective Magnitude-based Latency-Aware Pruning (MMLAP). MMLAP captures latency directly and incorporates a novel multi-objective evolutionary algorithm to optimize both accuracy of a DNN and its latency efficiency when designing compressed networks, i.e., when tuning hyper-parameters of LMP. Empirical studies show the competitiveness of MMLAP compared to well-established LMP methods and show the value of multi-objective optimization in yielding Pareto-optimal compressed networks in terms of accuracy and latency.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20203909228657
EI主题词
Multilayer neural networks ; Pareto principle ; Deep neural networks ; Evolutionary algorithms
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85091285814
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/188044
专题工学院_计算机科学与工程系
作者单位
1.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Management Science,University of Science and Technology of China,Hefei,230027,China
3.Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence,Guangzhou,510515,China
4.Department of Electronic and Computer Engineering,Department of Chemical and Biological Engineering,Hong Kong University of Science and Technology,Hong Kong
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Hong,Wenjing,Yang,Peng,Wang,Yiwen,et al. Multi-objective magnitude-based pruning for latency-aware deep neural network compression[C],2020:470-483.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
muti objective magni(455KB)会议论文--限制开放CC BY-NC-SA
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hong,Wenjing]的文章
[Yang,Peng]的文章
[Wang,Yiwen]的文章
百度学术
百度学术中相似的文章
[Hong,Wenjing]的文章
[Yang,Peng]的文章
[Wang,Yiwen]的文章
必应学术
必应学术中相似的文章
[Hong,Wenjing]的文章
[Yang,Peng]的文章
[Wang,Yiwen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。