中文版 | English
题名

Multilayer Perceptron Based on Joint Training for Predicting Popularity

作者
通讯作者Tian,Zhao
DOI
发表日期
2020
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12240 LNCS
页码
570-580
摘要
For predictive analysis, Independent features and feature combination are of equal importance, but most models only focus on either independent features or feature combinations. In this paper, we propose a novel deep network model for predictive analysis. It incorporates two components: wide simple feed-forward neural network and MLP (multilayer perceptron) neural network. The wide simple feed-forward neural network is used to generalize to unseen feature combinations, and MLP neural network’s aim to select and memorize vital independent features. The Feed-forward & MLP models are jointly trained for the Feed-forward & MLP model, in order to combine the benefits of selection, memorization and generalization. The results from the experiments show the jointly trained Neural Networks model can achieve ideal accuracy.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20203909228421
EI主题词
Multilayer neural networks ; Predictive analytics
Scopus记录号
2-s2.0-85091268791
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/188047
专题南方科技大学
作者单位
1.School of Software,Zhengzhou University,Zhengzhou,450003,China
2.Yellow River Institute of Hydraulic Research,Zhengzhou,China
3.Research Center on Levee Safety Disaster Prevention,Zhengzhou,China
4.Cooperative Innovation Center of Internet Healthcare,Zhengzhou University,Zhengzhou,450052,China
5.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
She,Wei,Xu,Li,Xu,Huibo,et al. Multilayer Perceptron Based on Joint Training for Predicting Popularity[C],2020:570-580.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[She,Wei]的文章
[Xu,Li]的文章
[Xu,Huibo]的文章
百度学术
百度学术中相似的文章
[She,Wei]的文章
[Xu,Li]的文章
[Xu,Huibo]的文章
必应学术
必应学术中相似的文章
[She,Wei]的文章
[Xu,Li]的文章
[Xu,Huibo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。