题名 | Multilayer Perceptron Based on Joint Training for Predicting Popularity |
作者 | |
通讯作者 | Tian,Zhao |
DOI | |
发表日期 | 2020
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 12240 LNCS
|
页码 | 570-580
|
摘要 | For predictive analysis, Independent features and feature combination are of equal importance, but most models only focus on either independent features or feature combinations. In this paper, we propose a novel deep network model for predictive analysis. It incorporates two components: wide simple feed-forward neural network and MLP (multilayer perceptron) neural network. The wide simple feed-forward neural network is used to generalize to unseen feature combinations, and MLP neural network’s aim to select and memorize vital independent features. The Feed-forward & MLP models are jointly trained for the Feed-forward & MLP model, in order to combine the benefits of selection, memorization and generalization. The results from the experiments show the jointly trained Neural Networks model can achieve ideal accuracy. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20203909228421
|
EI主题词 | Multilayer neural networks
; Predictive analytics
|
Scopus记录号 | 2-s2.0-85091268791
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/188047 |
专题 | 南方科技大学 |
作者单位 | 1.School of Software,Zhengzhou University,Zhengzhou,450003,China 2.Yellow River Institute of Hydraulic Research,Zhengzhou,China 3.Research Center on Levee Safety Disaster Prevention,Zhengzhou,China 4.Cooperative Innovation Center of Internet Healthcare,Zhengzhou University,Zhengzhou,450052,China 5.Southern University of Science and Technology,Shenzhen,China |
推荐引用方式 GB/T 7714 |
She,Wei,Xu,Li,Xu,Huibo,et al. Multilayer Perceptron Based on Joint Training for Predicting Popularity[C],2020:570-580.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论