中文版 | English
题名

Role of oxygen in surface kinetics of SiO2 growth on single crystal SiC at elevated temperatures

作者
通讯作者Deng,Hui
发表日期
2021-01-15
DOI
发表期刊
ISSN
0272-8842
EISSN
1873-3956
卷号47期号:2页码:1855-1864
摘要
Understanding surface kinetics of SiO2 growth on single crystal SiC at elevated temperatures is crucial to fabricate high-performance SiC-based devices. However, the role of oxygen in the evolution mechanism of SiC surface at atomic scale has not been comprehensively elaborated. Here, we reveal the manipulation effect of oxygen on the competitive growth of thermal oxidation SiO2 (TO-SiO2) and thermal chemical vapor deposition SiO2 (TCVD-SiO2) on the 4H-SiC substrate at 1500 degrees C. TO-SiO2 is formed by the thermal oxidation of SiC, in which the substrate undergoes layer-by-layer oxidation, resulting in an atomically flat SiC/TO-SiO2 interface. TCVD-SiO2 growth includes the sublimation of Si atoms, the reaction between sublimated Si atoms and reactive oxygen, and the adsorption of gaseous SixOy species. A relatively high sublimation rate of Si atoms at SiC atomic steps causes the transverse evolution of the nucleation sites, leading to the formation of nonuniform micron-sized pits at the SiC/TCVD-SiO2 interface. The low oxygen concentration favors TCVD-SiO2 growth, whose crystal quality is much better than that of TO-SiO2 due to the high surface mobility in the thermal CVD process. We further achieve the epitaxial growth of graphene on 4H-SiC in an almost oxygen-free reaction atmosphere. Additionally, ReaxFF reactive molecular dynamic simulation results illustrate that the decrease in oxygen concentration can promote the growth kinetics of SiO2 on single crystal SiC from being dominated by thermal oxidation to being dominated by thermal CVD.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Science and Technology Innovation Committee of Shenzhen Municipality, Shenzhen, China["KQTD20170810110250357","GJHZ20180928155412525"]
WOS研究方向
Materials Science
WOS类目
Materials Science, Ceramics
WOS记录号
WOS:000597774500003
出版者
EI入藏号
20203709171604
EI主题词
Silicon carbide ; Gas adsorption ; Thermooxidation ; Reaction kinetics ; Molecular dynamics ; Atoms ; Crystal atomic structure ; Silicon ; Sublimation ; Chemical vapor deposition ; Growth kinetics ; Kinetics ; Silica ; Silicon oxides
EI分类号
Nonferrous Metals and Alloys excluding Alkali and Alkaline Earth Metals:549.3 ; Fluid Flow, General:631.1 ; Physical Chemistry:801.4 ; Chemical Reactions:802.2 ; Chemical Operations:802.3 ; Chemical Products Generally:804 ; Inorganic Compounds:804.2 ; Classical Physics; Quantum Theory; Relativity:931 ; Atomic and Molecular Physics:931.3 ; Crystalline Solids:933.1 ; Crystal Lattice:933.1.1
ESI学科分类
MATERIALS SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/188067
专题工学院_机械与能源工程系
作者单位
1.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Engineering,Faculty of Science,University of East Anglia,Norwich,Norwich Research Park,NR4 7TJ,United Kingdom
第一作者单位机械与能源工程系
通讯作者单位机械与能源工程系
第一作者的第一单位机械与能源工程系
推荐引用方式
GB/T 7714
Zhang,Yongjie,Liang,Shaoxiang,Zhang,Yi,et al. Role of oxygen in surface kinetics of SiO2 growth on single crystal SiC at elevated temperatures[J]. CERAMICS INTERNATIONAL,2021,47(2):1855-1864.
APA
Zhang,Yongjie.,Liang,Shaoxiang.,Zhang,Yi.,Li,Rulin.,Fang,Zhidong.,...&Deng,Hui.(2021).Role of oxygen in surface kinetics of SiO2 growth on single crystal SiC at elevated temperatures.CERAMICS INTERNATIONAL,47(2),1855-1864.
MLA
Zhang,Yongjie,et al."Role of oxygen in surface kinetics of SiO2 growth on single crystal SiC at elevated temperatures".CERAMICS INTERNATIONAL 47.2(2021):1855-1864.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Yongjie]的文章
[Liang,Shaoxiang]的文章
[Zhang,Yi]的文章
百度学术
百度学术中相似的文章
[Zhang,Yongjie]的文章
[Liang,Shaoxiang]的文章
[Zhang,Yi]的文章
必应学术
必应学术中相似的文章
[Zhang,Yongjie]的文章
[Liang,Shaoxiang]的文章
[Zhang,Yi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。