中文版 | English
题名

A Parallel Evolutionary Algorithm with Value Decomposition for Multi-agent Problems

作者
通讯作者Li,Gao
DOI
发表日期
2020
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12145 LNCS
页码
616-627
摘要
Many real-world problems involve cooperation and/or competition among multiple agents. These problems often can be formulated as multi-agent problems. Recently, Reinforcement Learning (RL) has made significant progress on single-agent problems. However, multi-agent problems still cannot be easily solved by traditional RL algorithms. First, the multi-agent environment is considered as a non-stationary system. Second, most multi-agent environments only provide a shared team reward as feedback. As a result, agents may not be able to learn proper cooperative or competitive behaviors by traditional RL. Our algorithm adopts Evolution Strategies (ES) for optimizing policy which is used to control agents and a value decomposition method for estimating proper fitness for each policy. Evolutionary Algorithm is considered as a promising alternative for signal-agent problems. Owing to its simplicity, scalability, and efficiency on zeroth-order optimization, EAs can even outperform RLs on some tasks. In order to solve multi-agent problems by EA, a value decomposition method is used to decompose the team reward. Our method is parallel on multiple cores, which can speed up our algorithm significantly. We test our algorithm on two benchmarking environments, and the experiment results show that our algorithm is better than traditional RL and other representative gradient-free methods.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20203108999767
EI主题词
Behavioral research ; Optimization ; Evolutionary algorithms ; Learning algorithms ; Decomposition methods ; Multi agent systems
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Artificial Intelligence:723.4 ; Machine Learning:723.4.2 ; Optimization Techniques:921.5 ; Social Sciences:971
Scopus记录号
2-s2.0-85088746137
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/188072
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Li,Gao,Duan,Qiqi,Shi,Yuhui. A Parallel Evolutionary Algorithm with Value Decomposition for Multi-agent Problems[C],2020:616-627.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Gao]的文章
[Duan,Qiqi]的文章
[Shi,Yuhui]的文章
百度学术
百度学术中相似的文章
[Li,Gao]的文章
[Duan,Qiqi]的文章
[Shi,Yuhui]的文章
必应学术
必应学术中相似的文章
[Li,Gao]的文章
[Duan,Qiqi]的文章
[Shi,Yuhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。