中文版 | English
题名

Optimal stochastic and online learning with individual iterates

作者
通讯作者Tang,Ke
发表日期
2019
ISSN
1049-5258
会议录名称
卷号
32
摘要
Stochastic composite mirror descent (SCMD) is a simple and efficient method able to capture both geometric and composite structures of optimization problems in machine learning. Existing strategies require to take either an average or a random selection of iterates to achieve optimal convergence rates, which, however, can either destroy the sparsity of solutions or slow down the practical training speed. In this paper, we propose a theoretically sound strategy to select an individual iterate of the vanilla SCMD, which is able to achieve optimal rates for both convex and strongly convex problems in a non-smooth learning setting. This strategy of outputting an individual iterate can preserve the sparsity of solutions which is crucial for a proper interpretation in sparse learning problems. We report experimental comparisons with several baseline methods to show the effectiveness of our method in achieving a fast training speed as well as in outputting sparse solutions.
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20203609142105
EI主题词
Structural optimization ; Stochastic systems ; E-learning ; Learning systems
EI分类号
Control Systems:731.1 ; Optimization Techniques:921.5 ; Numerical Methods:921.6 ; Systems Science:961
Scopus记录号
2-s2.0-85090174438
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/188079
专题工学院_计算机科学与工程系
作者单位
1.University Key Laboratory of Evolving Intelligent Systems of Guangdong Province,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Computer Science,Technical University of Kaiserslautern,Kaiserslautern,67653,Germany
3.School of Data Science,Department of Mathematics,City University of Hong Kong,Kowloon,Hong Kong
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Lei,Yunwen,Yang,Peng,Tang,Ke,et al. Optimal stochastic and online learning with individual iterates[C],2019.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
optimal_stochastic_a(694KB)会议论文--限制开放CC BY-NC-SA
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lei,Yunwen]的文章
[Yang,Peng]的文章
[Tang,Ke]的文章
百度学术
百度学术中相似的文章
[Lei,Yunwen]的文章
[Yang,Peng]的文章
[Tang,Ke]的文章
必应学术
必应学术中相似的文章
[Lei,Yunwen]的文章
[Yang,Peng]的文章
[Tang,Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。