题名 | Optimal stochastic and online learning with individual iterates |
作者 | |
通讯作者 | Tang,Ke |
发表日期 | 2019
|
ISSN | 1049-5258
|
会议录名称 | |
卷号 | 32
|
摘要 | Stochastic composite mirror descent (SCMD) is a simple and efficient method able to capture both geometric and composite structures of optimization problems in machine learning. Existing strategies require to take either an average or a random selection of iterates to achieve optimal convergence rates, which, however, can either destroy the sparsity of solutions or slow down the practical training speed. In this paper, we propose a theoretically sound strategy to select an individual iterate of the vanilla SCMD, which is able to achieve optimal rates for both convex and strongly convex problems in a non-smooth learning setting. This strategy of outputting an individual iterate can preserve the sparsity of solutions which is crucial for a proper interpretation in sparse learning problems. We report experimental comparisons with several baseline methods to show the effectiveness of our method in achieving a fast training speed as well as in outputting sparse solutions. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20203609142105
|
EI主题词 | Structural optimization
; Stochastic systems
; E-learning
; Learning systems
|
EI分类号 | Control Systems:731.1
; Optimization Techniques:921.5
; Numerical Methods:921.6
; Systems Science:961
|
Scopus记录号 | 2-s2.0-85090174438
|
来源库 | Scopus
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/188079 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.University Key Laboratory of Evolving Intelligent Systems of Guangdong Province,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Department of Computer Science,Technical University of Kaiserslautern,Kaiserslautern,67653,Germany 3.School of Data Science,Department of Mathematics,City University of Hong Kong,Kowloon,Hong Kong |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Lei,Yunwen,Yang,Peng,Tang,Ke,et al. Optimal stochastic and online learning with individual iterates[C],2019.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
optimal_stochastic_a(694KB) | 会议论文 | -- | 限制开放 | CC BY-NC-SA |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论