中文版 | English
题名

Unsupervised feature selection by pareto optimization

作者
发表日期
2019
会议录名称
页码
3534-3541
摘要
Dimensionality reduction is often employed to deal with the data with a huge number of features, which can be generally divided into two categories: feature transformation and feature selection. Due to the interpretability, the efficiency during inference and the abundance of unlabeled data, unsupervised feature selection has attracted much attention. In this paper, we consider its natural formulation, column subset selection (CSS), which is to minimize the reconstruction error of a data matrix by selecting a subset of features. We propose an anytime randomized iterative approach POCSS, which minimizes the reconstruction error and the number of selected features simultaneously. Its approximation guarantee is well bounded. Empirical results exhibit the superior performance of POCSS over the state-of-the-art algorithms.
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20203509102159
EI主题词
Iterative methods ; Metadata ; Multiobjective optimization ; Pareto principle
EI分类号
Optimization Techniques:921.5 ; Numerical Methods:921.6
Scopus记录号
2-s2.0-85089873631
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/188081
专题工学院_计算机科学与工程系
作者单位
1.Anhui Province Key Lab of Big Data Analysis and Application,School of Computer Science and Technology,University of Science and Technology of China,Hefei,230027,China
2.Shenzhen Key Lab of Computational Intelligence,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Feng,Chao,Qian,Chao,Tang,Ke. Unsupervised feature selection by pareto optimization[C],2019:3534-3541.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Feng,Chao]的文章
[Qian,Chao]的文章
[Tang,Ke]的文章
百度学术
百度学术中相似的文章
[Feng,Chao]的文章
[Qian,Chao]的文章
[Tang,Ke]的文章
必应学术
必应学术中相似的文章
[Feng,Chao]的文章
[Qian,Chao]的文章
[Tang,Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。