中文版 | English
题名

MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection

作者
通讯作者Chen,Xin
发表日期
2021-03-01
DOI
发表期刊
ISSN
0167-9473
EISSN
1872-7352
卷号155
摘要

Sufficient dimension reduction (SDR) using distance covariance (DCOV) was recently proposed as an approach to dimension-reduction problems. Compared with other SDR methods, it is model-free without estimating link function and does not require any particular distributions on predictors. However, the DCOV-based SDR method involves optimizing a nonsmooth and nonconvex objective function over the Stiefel manifold. To tackle the numerical challenge, the original objective function is equivalently formulated into a DC (Difference of Convex functions) program and an iterative algorithm based on the majorization–minimization (MM) principle is constructed. At each step of the MM algorithm, one iteration of Riemannian Newton's method is taken to solve the quadratic subproblem on the Stiefel manifold inexactly. In addition, the algorithm can also be readily extended to sufficient variable selection (SVS) using distance covariance. Finally, the convergence property of the proposed algorithm under some regularity conditions is established. Simulation and real data analysis show our algorithm drastically improves the computation efficiency and is robust across various settings compared with the existing method. Matlab codes implementing our methods and scripts for regenerating the numerical results are available at https://github.com/runxiong-wu/MMRN.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Computer Science ; Mathematics
WOS类目
Computer Science, Interdisciplinary Applications ; Statistics & Probability
WOS记录号
WOS:000609164800012
出版者
EI入藏号
20204209353667
EI主题词
Computational efficiency ; Numerical methods ; MATLAB ; Functions
EI分类号
Computer Applications:723.5 ; Mathematics:921 ; Numerical Methods:921.6
ESI学科分类
MATHEMATICS
Scopus记录号
2-s2.0-85092520375
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/203716
专题南方科技大学
理学院_统计与数据科学系
作者单位
Department of Statistics & Data Science,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Wu,Runxiong,Chen,Xin. MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection[J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS,2021,155.
APA
Wu,Runxiong,&Chen,Xin.(2021).MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection.COMPUTATIONAL STATISTICS & DATA ANALYSIS,155.
MLA
Wu,Runxiong,et al."MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection".COMPUTATIONAL STATISTICS & DATA ANALYSIS 155(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wu,Runxiong]的文章
[Chen,Xin]的文章
百度学术
百度学术中相似的文章
[Wu,Runxiong]的文章
[Chen,Xin]的文章
必应学术
必应学术中相似的文章
[Wu,Runxiong]的文章
[Chen,Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。