题名 | MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection |
作者 | |
通讯作者 | Chen,Xin |
发表日期 | 2021-03-01
|
DOI | |
发表期刊 | |
ISSN | 0167-9473
|
EISSN | 1872-7352
|
卷号 | 155 |
摘要 | Sufficient dimension reduction (SDR) using distance covariance (DCOV) was recently proposed as an approach to dimension-reduction problems. Compared with other SDR methods, it is model-free without estimating link function and does not require any particular distributions on predictors. However, the DCOV-based SDR method involves optimizing a nonsmooth and nonconvex objective function over the Stiefel manifold. To tackle the numerical challenge, the original objective function is equivalently formulated into a DC (Difference of Convex functions) program and an iterative algorithm based on the majorization–minimization (MM) principle is constructed. At each step of the MM algorithm, one iteration of Riemannian Newton's method is taken to solve the quadratic subproblem on the Stiefel manifold inexactly. In addition, the algorithm can also be readily extended to sufficient variable selection (SVS) using distance covariance. Finally, the convergence property of the proposed algorithm under some regularity conditions is established. Simulation and real data analysis show our algorithm drastically improves the computation efficiency and is robust across various settings compared with the existing method. Matlab codes implementing our methods and scripts for regenerating the numerical results are available at https://github.com/runxiong-wu/MMRN. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
WOS研究方向 | Computer Science
; Mathematics
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Statistics & Probability
|
WOS记录号 | WOS:000609164800012
|
出版者 | |
EI入藏号 | 20204209353667
|
EI主题词 | Computational efficiency
; Numerical methods
; MATLAB
; Functions
|
EI分类号 | Computer Applications:723.5
; Mathematics:921
; Numerical Methods:921.6
|
ESI学科分类 | MATHEMATICS
|
Scopus记录号 | 2-s2.0-85092520375
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:6
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/203716 |
专题 | 南方科技大学 理学院_统计与数据科学系 |
作者单位 | Department of Statistics & Data Science,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Wu,Runxiong,Chen,Xin. MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection[J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS,2021,155.
|
APA |
Wu,Runxiong,&Chen,Xin.(2021).MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection.COMPUTATIONAL STATISTICS & DATA ANALYSIS,155.
|
MLA |
Wu,Runxiong,et al."MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection".COMPUTATIONAL STATISTICS & DATA ANALYSIS 155(2021).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论