中文版 | English
题名

Bi-Directional Recurrent Attentional Topic Model

作者
通讯作者Li,Shuangyin
发表日期
2020-10-01
DOI
发表期刊
ISSN
1556-4681
EISSN
1556-472X
卷号14期号:6
摘要
In a document, the topic distribution of a sentence depends on both the topics of its neighbored sentences and its own content, and it is usually affected by the topics of the neighbored sentences with different weights. The neighbored sentences of a sentence include the preceding sentences and the subsequent sentences. Meanwhile, it is natural that a document can be treated as a sequence of sentences. Most existing works for Bayesian document modeling do not take these points into consideration. To fill this gap, we propose a bi-Directional Recurrent Attentional Topic Model (bi-RATM) for document embedding. The bi-RATM not only takes advantage of the sequential orders among sentences but also uses the attention mechanism to model the relations among successive sentences. To support to the bi-RATM, we propose a bi-Directional Recurrent Attentional Bayesian Process (bi-RABP) to handle the sequences. Based on the bi-RABP, bi-RATM fully utilizes the bi-directional sequential information of the sentences in a document. Online bi-RATM is proposed to handle large-scale corpus. Experiments on two corpora show that the proposed model outperforms state-of-the-art methods on document modeling and classification.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Key-Area Research and Development Program of Guangdong Province[2019B010137003] ; National Key-Area Research and Development Program of China[2018YFB1404402] ; Basic and Applied Basic Research Fund of Guangdong Province[2019B1515120085] ; Guangdong Science and Technology Fund[2018A07071702]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems ; Computer Science, Software Engineering
WOS记录号
WOS:000580421600010
出版者
EI入藏号
20204309372371
EI分类号
Information Retrieval and Use:903.3
Scopus记录号
2-s2.0-85092726562
来源库
Scopus
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/203770
专题工学院_计算机科学与工程系
作者单位
1.School of Computer Science,South China Normal University,Key Lab on Cloud Security and Assessment Technology of Guangzhou,Tianhe District, Guangzhou, Guangdong,No. 55, West of Zhongshan Avenue,510631,China
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen, Guangdong,1088 Xueyuan Avenue,518055,China
3.Department of Data and Computer Science,Sun Yat-sen University,Guangzhou, Guangdong,Waihuan East Road 132,510006,China
推荐引用方式
GB/T 7714
Li,Shuangyin,Zhang,Yu,Pan,Rong. Bi-Directional Recurrent Attentional Topic Model[J]. ACM Transactions on Knowledge Discovery from Data,2020,14(6).
APA
Li,Shuangyin,Zhang,Yu,&Pan,Rong.(2020).Bi-Directional Recurrent Attentional Topic Model.ACM Transactions on Knowledge Discovery from Data,14(6).
MLA
Li,Shuangyin,et al."Bi-Directional Recurrent Attentional Topic Model".ACM Transactions on Knowledge Discovery from Data 14.6(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Shuangyin]的文章
[Zhang,Yu]的文章
[Pan,Rong]的文章
百度学术
百度学术中相似的文章
[Li,Shuangyin]的文章
[Zhang,Yu]的文章
[Pan,Rong]的文章
必应学术
必应学术中相似的文章
[Li,Shuangyin]的文章
[Zhang,Yu]的文章
[Pan,Rong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。