中文版 | English
题名

Deep residual U-net with input of static structural responses for efficient U* load transfer path analysis

作者
通讯作者Wu,Nan
发表日期
2020-10-01
DOI
发表期刊
ISSN
1474-0346
EISSN
1873-5320
卷号46
摘要
U* index theory is widely used to illustrate the load transfer paths inside an engineering structure. However, the conventional U* load transfer path analysis based on the finite element method is computationally demanding especially for large-scale structures. In this research, a convolutional neural network based on the architecture of residual U-Net is introduced to realize high-efficiency U* estimation of plate-type structures with arbitrary dimensions, boundary conditions, and loading conditions for the first time. Besides the geometrical information of the structures, the static structural responses including the feature maps of nodal displacement and stress are involved in the network input. Different input data combinations are experimented to study how they contribute to the model training. It is noticed that the stress and displacement data can significantly lower the output errors in U* prediction, and the geometrical information helps in noise reduction in U* contour graphs. The proposed method is tested with homogeneous plates and functionally graded plates respectively indicating its remarkable performance in load transfer path prediction. Moreover, this method shortens the U* calculation time by over 95% compared to the conventional finite element method. The improved efficiency of load transfer path analysis greatly facilitates the implementation of structural analysis, design, and optimization.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Multidisciplinary
WOS记录号
WOS:000607575400037
出版者
EI入藏号
20204209342752
EI主题词
Regression analysis ; Structural analysis ; Convolutional neural networks ; Deep neural networks ; Noise abatement ; Convolution ; Plates (structural components) ; Efficiency
EI分类号
Structural Design, General:408.1 ; Structural Members and Shapes:408.2 ; Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Acoustic Noise:751.4 ; Production Engineering:913.1 ; Numerical Methods:921.6 ; Mathematical Statistics:922.2
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85092283986
来源库
Scopus
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/203777
专题工学院_力学与航空航天工程系
作者单位
1.Department of Mechanical Engineering,University of Manitoba,Winnipeg,R3T 5V6,Canada
2.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Department of Civil and Environmental Engineering,Shantou University,Shantou,515063,China
推荐引用方式
GB/T 7714
Zhao,Shengjie,Wu,Nan,Wang,Quan. Deep residual U-net with input of static structural responses for efficient U* load transfer path analysis[J]. ADVANCED ENGINEERING INFORMATICS,2020,46.
APA
Zhao,Shengjie,Wu,Nan,&Wang,Quan.(2020).Deep residual U-net with input of static structural responses for efficient U* load transfer path analysis.ADVANCED ENGINEERING INFORMATICS,46.
MLA
Zhao,Shengjie,et al."Deep residual U-net with input of static structural responses for efficient U* load transfer path analysis".ADVANCED ENGINEERING INFORMATICS 46(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhao,Shengjie]的文章
[Wu,Nan]的文章
[Wang,Quan]的文章
百度学术
百度学术中相似的文章
[Zhao,Shengjie]的文章
[Wu,Nan]的文章
[Wang,Quan]的文章
必应学术
必应学术中相似的文章
[Zhao,Shengjie]的文章
[Wu,Nan]的文章
[Wang,Quan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。