题名 | Effective parametric optimization for packaging design using Bayesian optimization |
作者 | |
DOI | |
发表日期 | 2020-08-01
|
ISBN | 978-1-7281-6827-2
|
会议录名称 | |
页码 | 1-6
|
会议日期 | 12-15 Aug. 2020
|
会议地点 | Guangzhou, China
|
摘要 | As different structure, materials and components are widely applied in electronic packaging, complicated responses of these heterogenous but integrated parts subjecting to thermo-mechanical loading during manufacturing and usage are becoming a crucial issue to reliability of packaging. Therefore, how to find optimal engineering design of packaging receives growing attention. For the past, Design of Experiment (DoE) combined with statistical analysis is generally adopted. However, the increasing complexity of electronic packaging dramatically enlarges the amount of design parameters, making these traditional methods hard to maintain its efficiency. In current study, we implement Bayesian optimization with Gaussian process (BO-GP) as a framework to search the optimal combination of design parameters to reduce the warpage of a testing packaging vehicle. Upper confidence bound (UCB) method is adopted to define how this framework search in the design space. By employing simulated annealing algorithm, the BO-GP framework in this study can balance the exploration and exploitation within the space and present good convergence towards optimal design parameters. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20204309396521
|
EI主题词 | Machine learning
; Electronics packaging
; Statistical tests
; Packaging
; Design of experiments
; Monte Carlo methods
|
EI分类号 | Heat Treatment Processes:537.1
; Packaging, General:694.1
; Artificial Intelligence:723.4
; Engineering Research:901.3
; Mathematical Statistics:922.2
|
Scopus记录号 | 2-s2.0-85093356585
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9202909 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/203802 |
专题 | 工学院_系统设计与智能制造学院 |
作者单位 | Southern University of Science and Technology,School of System Design and Intelligent Manufacturing,Shenzhen,China |
第一作者单位 | 系统设计与智能制造学院 |
第一作者的第一单位 | 系统设计与智能制造学院 |
推荐引用方式 GB/T 7714 |
Dai,Weijing,Xue,Ke,Wu,Jingshen,et al. Effective parametric optimization for packaging design using Bayesian optimization[C],2020:1-6.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论