题名 | Hybrid Zero Dynamics Inspired Feedback Control Policy Design for 3D Bipedal Locomotion using Reinforcement Learning |
作者 | |
通讯作者 | Zhang, Wei |
DOI | |
发表日期 | 2020
|
会议名称 | IEEE International Conference on Robotics and Automation (ICRA)
|
ISSN | 1050-4729
|
EISSN | 2577-087X
|
ISBN | 978-1-7281-7396-2
|
会议录名称 | |
页码 | 8746-8752
|
会议日期 | MAY 31-JUN 15, 2020
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | This paper presents a novel model-free reinforcement learning (RL) framework to design feedback control policies for 3D bipedal walking. Existing RL algorithms are often trained in an end-to-end manner or rely on prior knowledge of some reference joint trajectories. Different from these studies, we propose a novel policy structure that appropriately incorporates physical insights gained from the hybrid nature of the walking dynamics and the well-established hybrid zero dynamics approach for 3D bipedal walking. As a result, the overall RL framework has several key advantages, including lightweight network structure, short training time, and less dependence on prior knowledge. We demonstrate the effectiveness of the proposed method on Cassie, a challenging 3D bipedal robot. The proposed solution produces stable limit walking cycles that can track various walking speed in different directions. Surprisingly, without specifically trained with disturbances to achieve robustness, it also performs robustly against various adversarial forces applied to the torso towards both the forward and the backward directions. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Science Foundation[CNS-1552838]
|
WOS研究方向 | Automation & Control Systems
; Engineering
; Robotics
|
WOS类目 | Automation & Control Systems
; Engineering, Electrical & Electronic
; Robotics
|
WOS记录号 | WOS:000712319505104
|
EI入藏号 | 20204309375257
|
EI主题词 | Robust control
; Biped locomotion
; Dynamics
; Robotics
; Feedback control
|
EI分类号 | Biomechanics, Bionics and Biomimetics:461.3
; Artificial Intelligence:723.4
; Automatic Control Principles and Applications:731
; Control Systems:731.1
; Robotics:731.5
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9197175 |
引用统计 |
被引频次[WOS]:22
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/203806 |
专题 | 南方科技大学 工学院_机械与能源工程系 |
作者单位 | 1.Southern Univ Sci & Technol, SUSTech Inst Robot, Shenzhen, Peoples R China 2.Ohio State Univ, Mech & Aerosp Engn, Columbus, OH 43210 USA |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Castillo, Guillermo A.,Weng, Bowen,Zhang, Wei,et al. Hybrid Zero Dynamics Inspired Feedback Control Policy Design for 3D Bipedal Locomotion using Reinforcement Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:8746-8752.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论