题名 | Cooperative Multi-Robot Navigation in Dynamic Environment with Deep Reinforcement Learning |
作者 | |
通讯作者 | Hao, Qi |
DOI | |
发表日期 | 2020
|
会议名称 | IEEE International Conference on Robotics and Automation (ICRA)
|
ISSN | 1050-4729
|
EISSN | 2577-087X
|
ISBN | 978-1-7281-7396-2
|
会议录名称 | |
页码 | 448-454
|
会议日期 | MAY 31-JUN 15, 2020
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | The challenges of multi-robot navigation in dynamic environments lie in uncertainties in obstacle complexities, partially observation of robots, and policy implementation from simulations to the real world. This paper presents a cooperative approach to address the multi-robot navigation problem (MRNP) under dynamic environments using a deep reinforcement learning (DRL) framework, which can help multiple robots jointly achieve optimal paths despite a certain degree of obstacle complexities. The novelty of this work includes threefold: (1) developing a cooperative architecture that robots can exchange information with each other to select the optimal target locations; (2) developing a DRL based framework which can learn a navigation policy to generate the optimal paths for multiple robots; (3) developing a training mechanism based on dynamics randomization which can make the policy generalized and achieve the maximum performance in the real world. The method is tested with Gazebo simulations and 4 differential drive robots. Both simulation and experiment results validate the superior performance of the proposed method in terms of success rate and travel time when compared with the other state-of-art technologies. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61773197]
|
WOS研究方向 | Automation & Control Systems
; Engineering
; Robotics
|
WOS类目 | Automation & Control Systems
; Engineering, Electrical & Electronic
; Robotics
|
WOS记录号 | WOS:000712319500052
|
EI入藏号 | 20204309374941
|
EI主题词 | Deep learning
; Multipurpose robots
; Industrial robots
; Air navigation
; Travel time
|
EI分类号 | Air Transportation:431
; Air Navigation and Traffic Control:431.5
; Highway Transportation:432
; Railroad Transportation:433
; Waterway Transportation:434
; Ergonomics and Human Factors Engineering:461.4
; Artificial Intelligence:723.4
; Robotics:731.5
; Robot Applications:731.6
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9197209 |
引用统计 |
被引频次[WOS]:26
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/203807 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern Univ Sci & Technol, Dept Comp Sci & Engn, SUSTech Hayl Ctr Intelligent Transportat, Shenzhen Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Guangdong, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Han, Ruihua,Chen, Shengduo,Hao, Qi. Cooperative Multi-Robot Navigation in Dynamic Environment with Deep Reinforcement Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:448-454.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论