中文版 | English
题名

Cooperative Multi-Robot Navigation in Dynamic Environment with Deep Reinforcement Learning

作者
通讯作者Hao, Qi
DOI
发表日期
2020
会议名称
IEEE International Conference on Robotics and Automation (ICRA)
ISSN
1050-4729
EISSN
2577-087X
ISBN
978-1-7281-7396-2
会议录名称
页码
448-454
会议日期
MAY 31-JUN 15, 2020
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
The challenges of multi-robot navigation in dynamic environments lie in uncertainties in obstacle complexities, partially observation of robots, and policy implementation from simulations to the real world. This paper presents a cooperative approach to address the multi-robot navigation problem (MRNP) under dynamic environments using a deep reinforcement learning (DRL) framework, which can help multiple robots jointly achieve optimal paths despite a certain degree of obstacle complexities. The novelty of this work includes threefold: (1) developing a cooperative architecture that robots can exchange information with each other to select the optimal target locations; (2) developing a DRL based framework which can learn a navigation policy to generate the optimal paths for multiple robots; (3) developing a training mechanism based on dynamics randomization which can make the policy generalized and achieve the maximum performance in the real world. The method is tested with Gazebo simulations and 4 differential drive robots. Both simulation and experiment results validate the superior performance of the proposed method in terms of success rate and travel time when compared with the other state-of-art technologies.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[61773197]
WOS研究方向
Automation & Control Systems ; Engineering ; Robotics
WOS类目
Automation & Control Systems ; Engineering, Electrical & Electronic ; Robotics
WOS记录号
WOS:000712319500052
EI入藏号
20204309374941
EI主题词
Deep learning ; Multipurpose robots ; Industrial robots ; Air navigation ; Travel time
EI分类号
Air Transportation:431 ; Air Navigation and Traffic Control:431.5 ; Highway Transportation:432 ; Railroad Transportation:433 ; Waterway Transportation:434 ; Ergonomics and Human Factors Engineering:461.4 ; Artificial Intelligence:723.4 ; Robotics:731.5 ; Robot Applications:731.6
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9197209
引用统计
被引频次[WOS]:26
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/203807
专题工学院_计算机科学与工程系
作者单位
Southern Univ Sci & Technol, Dept Comp Sci & Engn, SUSTech Hayl Ctr Intelligent Transportat, Shenzhen Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Guangdong, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Han, Ruihua,Chen, Shengduo,Hao, Qi. Cooperative Multi-Robot Navigation in Dynamic Environment with Deep Reinforcement Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:448-454.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Han, Ruihua]的文章
[Chen, Shengduo]的文章
[Hao, Qi]的文章
百度学术
百度学术中相似的文章
[Han, Ruihua]的文章
[Chen, Shengduo]的文章
[Hao, Qi]的文章
必应学术
必应学术中相似的文章
[Han, Ruihua]的文章
[Chen, Shengduo]的文章
[Hao, Qi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。