中文版 | English
题名

CS2-Net: Deep learning segmentation of curvilinear structures in medical imaging

作者
通讯作者Zhao,Yitian
发表日期
2020
DOI
发表期刊
ISSN
1361-8415
EISSN
1361-8423
卷号67
摘要

Automated detection of curvilinear structures, e.g., blood vessels or nerve fibres, from medical and biomedical images is a crucial early step in automatic image interpretation associated to the management of many diseases. Precise measurement of the morphological changes of these curvilinear organ structures informs clinicians for understanding the mechanism, diagnosis, and treatment of e.g. cardiovascular, kidney, eye, lung, and neurological conditions. In this work, we propose a generic and unified convolution neural network for the segmentation of curvilinear structures and illustrate in several 2D/3D medical imaging modalities. We introduce a new curvilinear structure segmentation network (CS-Net), which includes a self-attention mechanism in the encoder and decoder to learn rich hierarchical representations of curvilinear structures. Two types of attention modules - spatial attention and channel attention - are utilized to enhance the inter-class discrimination and intra-class responsiveness, to further integrate local features with their global dependencies and normalization, adaptively. Furthermore, to facilitate the segmentation of curvilinear structures in medical images, we employ a 1×3 and a 3×1 convolutional kernel to capture boundary features. Besides, we extend the 2D attention mechanism to 3D to enhance the network's ability to aggregate depth information across different layers/slices. The proposed curvilinear structure segmentation network is thoroughly validated using both 2D and 3D images across six different imaging modalities. Experimental results across nine datasets show the proposed method generally outperforms other state-of-the-art algorithms in various metrics.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
重要成果
ESI高被引
学校署名
其他
资助项目
Zhejiang Provincial Natural Science Foundation[
WOS研究方向
Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000598892100001
出版者
EI入藏号
20204509468321
EI主题词
Convolution ; Channel coding ; Medical imaging ; Image segmentation ; Blood ; Blood vessels ; Diagnosis
EI分类号
Biomedical Engineering:461.1 ; Biological Materials and Tissue Engineering:461.2 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Information Theory and Signal Processing:716.1 ; Data Communication, Equipment and Techniques:722.3 ; Imaging Techniques:746
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85095451000
来源库
Scopus
引用统计
被引频次[WOS]:178
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209059
专题工学院_计算机科学与工程系
作者单位
1.Cixi Institute of Biomedical Engineering,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo,China
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
3.Inception Institute of Artificial Intelligence,Abu Dhabi,United Arab Emirates
4.Department of Computer Science,Edge Hill University,Ormskirk,United Kingdom
5.UBTech Research,UBTech Robotics Corp Ltd,Shenzhen,China
6.Department of Eye and Vision Science,University of Liverpool,Liverpool,United Kingdom
7.School of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan,China
8.Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB),School of Computing and School of Medicine,University of Leeds,Leeds,United Kingdom
9.Leeds Institute of Cardiovascular and Metabolic Medicine,School of Medicine,University of Leeds,Leeds,United Kingdom
10.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
11.Medical Imaging Research Centre (MIRC),University Hospital Gasthuisberg,Cardiovascular Sciences and Electrical Engineering Departments,Leuven,KU Leuven,Belgium
12.R&D Division,Topcon Corporation,Japan
推荐引用方式
GB/T 7714
Mou,Lei,Zhao,Yitian,Fu,Huazhu,et al. CS2-Net: Deep learning segmentation of curvilinear structures in medical imaging[J]. MEDICAL IMAGE ANALYSIS,2020,67.
APA
Mou,Lei.,Zhao,Yitian.,Fu,Huazhu.,Liu,Yonghuai.,Cheng,Jun.,...&Liu,Jiang.(2020).CS2-Net: Deep learning segmentation of curvilinear structures in medical imaging.MEDICAL IMAGE ANALYSIS,67.
MLA
Mou,Lei,et al."CS2-Net: Deep learning segmentation of curvilinear structures in medical imaging".MEDICAL IMAGE ANALYSIS 67(2020).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
CS2-Net Deep learnin(6058KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Mou,Lei]的文章
[Zhao,Yitian]的文章
[Fu,Huazhu]的文章
百度学术
百度学术中相似的文章
[Mou,Lei]的文章
[Zhao,Yitian]的文章
[Fu,Huazhu]的文章
必应学术
必应学术中相似的文章
[Mou,Lei]的文章
[Zhao,Yitian]的文章
[Fu,Huazhu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。