中文版 | English
题名

Efficient uncertainty quantification for dynamic subsurface flow with surrogate by Theory-guided Neural Network

作者
通讯作者Chang,Haibin
发表日期
2021
DOI
发表期刊
ISSN
0045-7825
EISSN
1879-2138
卷号373
摘要
Subsurface flow problems usually involve some degree of uncertainty. Consequently, uncertainty quantification is commonly necessary for subsurface flow prediction. In this work, we propose a methodology for efficient uncertainty quantification for dynamic subsurface flow with a surrogate constructed by the Theory-guided Neural Network (TgNN). The TgNN here is specially designed for problems with stochastic parameters. In the TgNN, stochastic parameters, time and location comprise the input of the neural network, while the quantity of interest is the output. The neural network is trained with available simulation data, while being simultaneously guided by theory (e.g., the governing equation, boundary conditions, initial conditions, etc.) of the underlying problem. The trained neural network can predict solutions of subsurface flow problems with new stochastic parameters. With the TgNN surrogate, the Monte Carlo (MC) method can be efficiently implemented for uncertainty quantification. The proposed methodology is evaluated with two-dimensional dynamic saturated flow problems in porous medium. Numerical results show that the TgNN based surrogate can significantly improve the efficiency of uncertainty quantification tasks compared with simulation based implementation. Further investigations regarding stochastic fields with smaller correlation length, larger variance, changing boundary values and out-of-distribution variances are performed, and satisfactory results are obtained. (C) 2020 The Author(s). Published by Elsevier B.V.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[51520105005,"U1663208"] ; National Science and Technology Major Project of China["2017ZX05009-005","2017ZX05049-003"]
WOS研究方向
Engineering ; Mathematics ; Mechanics
WOS类目
Engineering, Multidisciplinary ; Mathematics, Interdisciplinary Applications ; Mechanics
WOS记录号
WOS:000600288300006
出版者
EI入藏号
20204409433635
EI主题词
Uncertainty analysis ; Porous materials ; Monte Carlo methods
EI分类号
Control Systems:731.1 ; Probability Theory:922.1 ; Mathematical Statistics:922.2 ; Materials Science:951 ; Systems Science:961
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:51
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209075
专题工学院_环境科学与工程学院
作者单位
1.BIC-ESAT,ERE,and SKLTCS,College of Engineering,Peking University,Beijing,100871,China
2.Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.State Environmental Protection Key Laboratory of Integrated Surface Water–Groundwater Pollution Control,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
4.Intelligent Energy Lab,Peng Cheng Laboratory,Shenzhen,518000,China
推荐引用方式
GB/T 7714
Wang,Nanzhe,Chang,Haibin,Zhang,Dongxiao. Efficient uncertainty quantification for dynamic subsurface flow with surrogate by Theory-guided Neural Network[J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING,2021,373.
APA
Wang,Nanzhe,Chang,Haibin,&Zhang,Dongxiao.(2021).Efficient uncertainty quantification for dynamic subsurface flow with surrogate by Theory-guided Neural Network.COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING,373.
MLA
Wang,Nanzhe,et al."Efficient uncertainty quantification for dynamic subsurface flow with surrogate by Theory-guided Neural Network".COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 373(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Nanzhe]的文章
[Chang,Haibin]的文章
[Zhang,Dongxiao]的文章
百度学术
百度学术中相似的文章
[Wang,Nanzhe]的文章
[Chang,Haibin]的文章
[Zhang,Dongxiao]的文章
必应学术
必应学术中相似的文章
[Wang,Nanzhe]的文章
[Chang,Haibin]的文章
[Zhang,Dongxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。