中文版 | English
题名

Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting

作者
通讯作者Jia,Youwei
发表日期
2020-12-15
DOI
发表期刊
ISSN
0306-2619
EISSN
1872-9118
卷号280
摘要
With the ever-increased penetration of solar energy in the power grid, solar photovoltaic forecasting has become an indispensable aspect in maintaining power system stability and economic operation. At the operating stage, the forecasting accuracy of renewables has a direct influence on energy scheduling and dispatching. In this paper, we propose a series of novel approaches based on deep whole-sky-image learning architectures for very short-term solar photovoltaic generation forecasting, of which the lookahead windows concern the scales from 4 to 20 min. In particular, multiple deep learning models with the integration of both static sky image units and dynamic sky image stream are explicitly investigated. Extensive numerical studies on various models are carried out, through which the experimental results show that the proposed hybrid static image forecaster provides superior performance as compared to the benchmarking methods (i.e. the ones without sky images), with up to 8.3% improvement in general, and up to 32.8% improvement in the cases of ramp events. In addition, case studies at multiple time scales reveal that sky-image-based models can be more robust to the ramp events in solar photovoltaic generation.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Australian Research Council (ARC)["DP170103427","DP180103217"] ; Natural Science Foundation of China[72071100] ; Guangdong Basic and Applied Basic Research Fund[2019A1515111173] ; Dept. of Education of Guangdong Province, Young Talent Program[2018KQNCX223] ; High-level University Fund[G02236002]
WOS研究方向
Energy & Fuels ; Engineering
WOS类目
Energy & Fuels ; Engineering, Chemical
WOS记录号
WOS:000594131000001
出版者
EI入藏号
20204509453551
EI主题词
Image enhancement ; Long short-term memory ; Benchmarking ; Convolution ; Solar power generation ; System stability ; Electric power transmission networks ; Numerical methods ; Solar energy
EI分类号
Solar Power:615.2 ; Solar Energy and Phenomena:657.1 ; Electric Power Transmission:706.1.1 ; Information Theory and Signal Processing:716.1 ; Numerical Methods:921.6 ; Systems Science:961
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85094919413
来源库
Scopus
引用统计
被引频次[WOS]:62
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209080
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,China
2.School of Electrical Engineering and Telecommunications,the University of New South Wales,Sydney,Australia
3.Department of Electrical Engineering,The Hong Kong Polytechnic University,Hong Kong
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Kong,Weicong,Jia,Youwei,Dong,Zhao Yang,et al. Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting[J]. APPLIED ENERGY,2020,280.
APA
Kong,Weicong,Jia,Youwei,Dong,Zhao Yang,Meng,Ke,&Chai,Songjian.(2020).Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting.APPLIED ENERGY,280.
MLA
Kong,Weicong,et al."Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting".APPLIED ENERGY 280(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Kong,Weicong]的文章
[Jia,Youwei]的文章
[Dong,Zhao Yang]的文章
百度学术
百度学术中相似的文章
[Kong,Weicong]的文章
[Jia,Youwei]的文章
[Dong,Zhao Yang]的文章
必应学术
必应学术中相似的文章
[Kong,Weicong]的文章
[Jia,Youwei]的文章
[Dong,Zhao Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。