中文版 | English
题名

Anomalous conductivity behavior induced by in situ metastable amorphous phase in BaTiO3/Ni0.5Zn0.5Fe2O4 ceramic composite

作者
通讯作者Du,Piyi; Wang,Hong
发表日期
2020-12-15
DOI
发表期刊
ISSN
0272-8842
EISSN
1873-3956
卷号46期号:18页码:28659-28667
摘要

The electrical conductivity of ferroelectric-ferromagnetic ceramic composites usually increases monotonously with elevated temperature, which may seriously deteriorate their performance. In this work, we report an anomalous conductivity behavior induced by in situ metastable amorphous phase in a semi-conductive ceramic composite, 0.1BaTiO(BTO)/0.9NiZnFeO(NZFO). The ceramic composites with in situ formed amorphous BTO phase (a-BTO) or crystalline BTO phase (c-BTO) were successfully prepared. The effect of such metastable amorphous phase on the electrical transport properties of the ceramic composite was investigated. A comparative study reveals that a-BTO could act as a buffering phase preventing the electrical conductivity of the composite from monotonous increment above a critical temperature (513 K), whereas such effect does not occur when BTO is pure crystalline. Around 513 K, a change in the activation energy of dc conductivity has been observed for the c-BTO/NZFO sample. Whereas for the a-BTO/NZFO sample, the Arrhenius relation fails to describe its behavior above 513 K owing to decreased conductivity, which is rarely seen in semiconductors. The activation energy of relaxation is identical for both systems, i.e. 0.204 eV, because their dielectric relaxation is dominated by crystalline NZFO phase. The findings of this work are inspiring for the design of novel electronic materials constituted by a crystalline phase and an amorphous phase with adjustable performance.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Shenzhen Science and Technology Program[KQTD20180411143514543][JCYJ20180504165831308] ; Shenzhen DRC project[[2018]1433] ; National Natural Science Foundation of China[51772269]
WOS研究方向
Materials Science
WOS类目
Materials Science, Ceramics
WOS记录号
WOS:000582503700082
出版者
EI入藏号
20203409067739
EI主题词
Dielectric relaxation ; Barium titanate ; Transport properties ; Electric conductivity ; Crystalline materials
EI分类号
Electricity: Basic Concepts and Phenomena:701.1 ; Inorganic Compounds:804.2 ; Ceramics:812.1 ; Physical Properties of Gases, Liquids and Solids:931.2 ; Crystalline Solids:933.1
ESI学科分类
MATERIALS SCIENCE
Scopus记录号
2-s2.0-85089511708
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209081
专题工学院_材料科学与工程系
作者单位
1.Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices,Southern University of Science and Technology,Shenzhen,518055,China
3.State Key Laboratory of Silicon Materials,School of Materials Science and Engineering,Zhejiang University,Hangzhou,310027,China
4.Department of Materials Science and Engineering,College of Aerospace Science and Engineering,National University of Defense Technology,Changsha,410073,China
第一作者单位材料科学与工程系;  南方科技大学
通讯作者单位材料科学与工程系;  南方科技大学
第一作者的第一单位材料科学与工程系
推荐引用方式
GB/T 7714
Xiao,Bin,Tang,Yu,Du,Piyi,et al. Anomalous conductivity behavior induced by in situ metastable amorphous phase in BaTiO3/Ni0.5Zn0.5Fe2O4 ceramic composite[J]. CERAMICS INTERNATIONAL,2020,46(18):28659-28667.
APA
Xiao,Bin,Tang,Yu,Du,Piyi,&Wang,Hong.(2020).Anomalous conductivity behavior induced by in situ metastable amorphous phase in BaTiO3/Ni0.5Zn0.5Fe2O4 ceramic composite.CERAMICS INTERNATIONAL,46(18),28659-28667.
MLA
Xiao,Bin,et al."Anomalous conductivity behavior induced by in situ metastable amorphous phase in BaTiO3/Ni0.5Zn0.5Fe2O4 ceramic composite".CERAMICS INTERNATIONAL 46.18(2020):28659-28667.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiao,Bin]的文章
[Tang,Yu]的文章
[Du,Piyi]的文章
百度学术
百度学术中相似的文章
[Xiao,Bin]的文章
[Tang,Yu]的文章
[Du,Piyi]的文章
必应学术
必应学术中相似的文章
[Xiao,Bin]的文章
[Tang,Yu]的文章
[Du,Piyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。