中文版 | English
题名

Active learning for the power factor prediction in diamond-like thermoelectric materials

作者
通讯作者Yang,Jiong; Zhang,Wenqing
发表日期
2020-12-01
DOI
发表期刊
ISSN
2057-3960
EISSN
2057-3960
卷号6期号:1
摘要

The Materials Genome Initiative requires the crossing of material calculations, machine learning, and experiments to accelerate the material development process. In recent years, data-based methods have been applied to the thermoelectric field, mostly on the transport properties. In this work, we combined data-driven machine learning and first-principles automated calculations into an active learning loop, in order to predict the p-type power factors (PFs) of diamond-like pnictides and chalcogenides. Our active learning loop contains two procedures (1) based on a high-throughput theoretical database, machine learning methods are employed to select potential candidates and (2) computational verification is applied to these candidates about their transport properties. The verification data will be added into the database to improve the extrapolation abilities of the machine learning models. Different strategies of selecting candidates have been tested, finally the Gradient Boosting Regression model of Query by Committee strategy has the highest extrapolation accuracy (the Pearson R = 0.95 on untrained systems). Based on the prediction from the machine learning models, binary pnictides, vacancy, and small atom-containing chalcogenides are predicted to have large PFs. The bonding analysis reveals that the alterations of anionic bonding networks due to small atoms are beneficial to the PFs in these compounds.

相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Key Research and Development Program of China[2018YFB0703600][2017YFB0701600] ; Natural Science Foundation of China[11674211][51632005][51761135127] ; 111 Project[D16002] ; Guangdong Innovation Research Team Project[2017ZT07C062] ; Guangdong Provincial Key-Lab program[2019B030301001] ; Shenzhen Municipal Key-Lab program[ZDSYS20190902092905285]
WOS研究方向
Chemistry ; Materials Science
WOS类目
Chemistry, Physical ; Materials Science, Multidisciplinary
WOS记录号
WOS:000593956000002
出版者
EI入藏号
20204609477082
EI主题词
Query processing ; Adaptive boosting ; Calculations ; Electric power factor ; Chalcogenides ; Transport properties ; Forecasting ; Regression analysis
EI分类号
Computer Software, Data Handling and Applications:723 ; Inorganic Compounds:804.2 ; Mathematics:921 ; Numerical Methods:921.6 ; Mathematical Statistics:922.2 ; Physical Properties of Gases, Liquids and Solids:931.2
Scopus记录号
2-s2.0-85095792099
来源库
Scopus
引用统计
被引频次[WOS]:40
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209083
专题理学院_物理系
量子科学与工程研究院
作者单位
1.Materials Genome Institute,Shanghai University,Shanghai,200444,China
2.Qianweichang College,Shanghai University,Shanghai,200444,China
3.Department of Chemistry,College of Science,Shanghai University,Shanghai,200444,China
4.Material Phases Data System,Vitznau,CH-6354,Switzerland
5.Department of Physics and Shenzhen Institute for Quantum Science & Technology,Southern University of Science and Technology,Shenzhen,518055,China
6.Guangdong Provincial Key Lab for Computational Science and Material Design,and Shenzhen Municipal Key Lab for Advanced Quantum Material and Device,Southern University of Science and Technology,Shenzhen,518055,China
通讯作者单位物理系;  量子科学与工程研究院;  南方科技大学
推荐引用方式
GB/T 7714
Sheng,Ye,Wu,Yasong,Yang,Jiong,et al. Active learning for the power factor prediction in diamond-like thermoelectric materials[J]. npj Computational Materials,2020,6(1).
APA
Sheng,Ye,Wu,Yasong,Yang,Jiong,Lu,Wencong,Villars,Pierre,&Zhang,Wenqing.(2020).Active learning for the power factor prediction in diamond-like thermoelectric materials.npj Computational Materials,6(1).
MLA
Sheng,Ye,et al."Active learning for the power factor prediction in diamond-like thermoelectric materials".npj Computational Materials 6.1(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sheng,Ye]的文章
[Wu,Yasong]的文章
[Yang,Jiong]的文章
百度学术
百度学术中相似的文章
[Sheng,Ye]的文章
[Wu,Yasong]的文章
[Yang,Jiong]的文章
必应学术
必应学术中相似的文章
[Sheng,Ye]的文章
[Wu,Yasong]的文章
[Yang,Jiong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。