中文版 | English
题名

Deconvolutional artificial neural network models for large eddy simulation of turbulence

作者
通讯作者Wang,Jianchun
发表日期
2020-11-01
DOI
发表期刊
ISSN
1070-6631
EISSN
1089-7666
卷号32期号:11
摘要
Deconvolutional artificial neural network (DANN) models are developed for subgrid-scale (SGS) stress in large eddy simulation (LES) of turbulence. The filtered velocities at different spatial points are used as input features of the DANN models to reconstruct the unfiltered velocity. The grid width of the DANN models is chosen to be smaller than the filter width in order to accurately model the effects of SGS dynamics. The DANN models can predict the SGS stress more accurately than the conventional approximate deconvolution method and velocity gradient model in the a priori study: the correlation coefficients can be made larger than 99% and the relative errors can be made less than 15% for the DANN model. In an a posteriori study, a comprehensive comparison of the DANN model, the implicit LES (ILES), the dynamic Smagorinsky model (DSM), and the dynamic mixed model (DMM) shows that the DANN model is superior to the ILES, DSM, and DMM models in the prediction of the velocity spectrum, various statistics of velocity, and the instantaneous coherent structures without increasing the considerable computational cost; the time for the DANN model to calculate the SGS stress is about 1.3 times that of the DMM model. In addition, the trained DANN models without any fine-tuning can predict the velocity statistics well for different filter widths. These results indicate that the DANN framework with the consideration of SGS spatial features is a promising approach to develop advanced SGS models in the LES of turbulence.
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Numerical Windtunnel Project[NNW2019ZT1-A04] ; National Natural Science Foundation of China (NSFC)[91952104][11702127][91752201] ; Shenzhen Science and Technology Program[KQTD20180411143441009][JCYJ20170412151759222] ; Department of Science and Technology of Guangdong Province[2019B21203001] ; Young Elite Scientist Sponsorship Program by CAST[2016QNRC001]
WOS研究方向
Mechanics ; Physics
WOS类目
Mechanics ; Physics, Fluids & Plasmas
WOS记录号
WOS:000589660100002
出版者
EI入藏号
20204609489322
EI主题词
Forecasting ; Turbulence ; Neural networks ; Velocity
EI分类号
Fluid Flow:631 ; Mathematics:921
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85095865661
来源库
Scopus
引用统计
被引频次[WOS]:60
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209116
专题工学院_力学与航空航天工程系
作者单位
Guangdong Provincial Key Laboratory of Turbulence Research and Applications,Center for Complex Flows and Soft Matter Research,Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位力学与航空航天工程系
通讯作者单位力学与航空航天工程系
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Yuan,Zelong,Xie,Chenyue,Wang,Jianchun. Deconvolutional artificial neural network models for large eddy simulation of turbulence[J]. PHYSICS OF FLUIDS,2020,32(11).
APA
Yuan,Zelong,Xie,Chenyue,&Wang,Jianchun.(2020).Deconvolutional artificial neural network models for large eddy simulation of turbulence.PHYSICS OF FLUIDS,32(11).
MLA
Yuan,Zelong,et al."Deconvolutional artificial neural network models for large eddy simulation of turbulence".PHYSICS OF FLUIDS 32.11(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yuan,Zelong]的文章
[Xie,Chenyue]的文章
[Wang,Jianchun]的文章
百度学术
百度学术中相似的文章
[Yuan,Zelong]的文章
[Xie,Chenyue]的文章
[Wang,Jianchun]的文章
必应学术
必应学术中相似的文章
[Yuan,Zelong]的文章
[Xie,Chenyue]的文章
[Wang,Jianchun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。