题名 | Deconvolutional artificial neural network models for large eddy simulation of turbulence |
作者 | |
通讯作者 | Wang,Jianchun |
发表日期 | 2020-11-01
|
DOI | |
发表期刊 | |
ISSN | 1070-6631
|
EISSN | 1089-7666
|
卷号 | 32期号:11 |
摘要 | Deconvolutional artificial neural network (DANN) models are developed for subgrid-scale (SGS) stress in large eddy simulation (LES) of turbulence. The filtered velocities at different spatial points are used as input features of the DANN models to reconstruct the unfiltered velocity. The grid width of the DANN models is chosen to be smaller than the filter width in order to accurately model the effects of SGS dynamics. The DANN models can predict the SGS stress more accurately than the conventional approximate deconvolution method and velocity gradient model in the a priori study: the correlation coefficients can be made larger than 99% and the relative errors can be made less than 15% for the DANN model. In an a posteriori study, a comprehensive comparison of the DANN model, the implicit LES (ILES), the dynamic Smagorinsky model (DSM), and the dynamic mixed model (DMM) shows that the DANN model is superior to the ILES, DSM, and DMM models in the prediction of the velocity spectrum, various statistics of velocity, and the instantaneous coherent structures without increasing the considerable computational cost; the time for the DANN model to calculate the SGS stress is about 1.3 times that of the DMM model. In addition, the trained DANN models without any fine-tuning can predict the velocity statistics well for different filter widths. These results indicate that the DANN framework with the consideration of SGS spatial features is a promising approach to develop advanced SGS models in the LES of turbulence. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Numerical Windtunnel Project[NNW2019ZT1-A04]
; National Natural Science Foundation of China (NSFC)[91952104][11702127][91752201]
; Shenzhen Science and Technology Program[KQTD20180411143441009][JCYJ20170412151759222]
; Department of Science and Technology of Guangdong Province[2019B21203001]
; Young Elite Scientist Sponsorship Program by CAST[2016QNRC001]
|
WOS研究方向 | Mechanics
; Physics
|
WOS类目 | Mechanics
; Physics, Fluids & Plasmas
|
WOS记录号 | WOS:000589660100002
|
出版者 | |
EI入藏号 | 20204609489322
|
EI主题词 | Forecasting
; Turbulence
; Neural networks
; Velocity
|
EI分类号 | Fluid Flow:631
; Mathematics:921
|
ESI学科分类 | PHYSICS
|
Scopus记录号 | 2-s2.0-85095865661
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:60
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/209116 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | Guangdong Provincial Key Laboratory of Turbulence Research and Applications,Center for Complex Flows and Soft Matter Research,Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 力学与航空航天工程系 |
通讯作者单位 | 力学与航空航天工程系 |
第一作者的第一单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Yuan,Zelong,Xie,Chenyue,Wang,Jianchun. Deconvolutional artificial neural network models for large eddy simulation of turbulence[J]. PHYSICS OF FLUIDS,2020,32(11).
|
APA |
Yuan,Zelong,Xie,Chenyue,&Wang,Jianchun.(2020).Deconvolutional artificial neural network models for large eddy simulation of turbulence.PHYSICS OF FLUIDS,32(11).
|
MLA |
Yuan,Zelong,et al."Deconvolutional artificial neural network models for large eddy simulation of turbulence".PHYSICS OF FLUIDS 32.11(2020).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论