题名 | Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence |
作者 | |
通讯作者 | Wang,Jianchun |
发表日期 | 2020-11-01
|
DOI | |
发表期刊 | |
ISSN | 1070-6631
|
EISSN | 1089-7666
|
卷号 | 32期号:11 |
摘要 | In this work, artificial neural network-based nonlinear algebraic models (ANN-NAMs) are developed for the subgrid-scale (SGS) stress in large eddy simulation (LES) of turbulence at the Taylor Reynolds number Reλ ranging from 180 to 250. An ANN architecture is applied to construct the coefficients of the general NAM for the SGS anisotropy stress. It is shown that the ANN-NAMs can reconstruct the SGS stress accurately in the a priori test. Furthermore, the ANN-NAMs are analyzed by calculating the average, root mean square values, and probability density functions of dimensionless model coefficients. In an a posteriori analysis, we compared the performance of the dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and ANN-NAM. The ANN-NAM yields good agreement with a filtered direct numerical simulation dataset for the spectrum, structure functions, and other statistics of velocity. Besides, the ANN-NAM predicts the instantaneous spatial structures of SGS anisotropy stress much better than the DSM and DMM. The NAM based on the ANN is a promising approach to deepen our understanding of SGS modeling in LES of turbulence. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Numerical Windtunnel Project[NNW2019ZT1-A04]
; National Natural Science Foundation of China (NSFC)[91952104][11702127][91752201]
; Technology and Innovation Commission of Shenzhen Municipality[KQTD20180411143441009][JCYJ20170412151759222]
; Department of Science and Technology of Guangdong Province[2019B21203001]
; Young Elite Scientist Sponsorship Program by CAST[2016QNRC001]
|
WOS研究方向 | Mechanics
; Physics
|
WOS类目 | Mechanics
; Physics, Fluids & Plasmas
|
WOS记录号 | WOS:000589619000001
|
出版者 | |
EI入藏号 | 20204609481228
|
EI主题词 | Probability density function
; Reynolds number
; Neural networks
; Algebra
; Anisotropy
; Turbulence
|
EI分类号 | Fluid Flow:631
; Fluid Flow, General:631.1
; Mathematics:921
; Algebra:921.1
; Probability Theory:922.1
; Physical Properties of Gases, Liquids and Solids:931.2
|
ESI学科分类 | PHYSICS
|
Scopus记录号 | 2-s2.0-85095756904
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:65
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/209122 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | Guangdong Provincial Key Laboratory of Turbulence Research and Applications,Center for Complex Flows and Soft Matter Research,Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 力学与航空航天工程系 |
通讯作者单位 | 力学与航空航天工程系 |
第一作者的第一单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Xie,Chenyue,Yuan,Zelong,Wang,Jianchun. Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence[J]. PHYSICS OF FLUIDS,2020,32(11).
|
APA |
Xie,Chenyue,Yuan,Zelong,&Wang,Jianchun.(2020).Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence.PHYSICS OF FLUIDS,32(11).
|
MLA |
Xie,Chenyue,et al."Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence".PHYSICS OF FLUIDS 32.11(2020).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论