题名 | Improving the image quality of elastic reverse-time migration in the dip-angle domain using deep learning |
作者 | |
通讯作者 | Sun,Hui |
发表日期 | 2020-09-01
|
DOI | |
发表期刊 | |
ISSN | 0016-8033
|
EISSN | 1942-2156
|
卷号 | 85期号:5页码:S269-S283 |
摘要 | Elastic reverse-time migration (ERTM) is becoming increasingly feasible with the development of high-performance computing. It can provide more physical information on subsurface structures. However, the crosstalk artifacts degrade the imaging resolution of ERTM. To obtain high-resolution ERTM imaging, we have developed additional constraints through a convolutional neural network (CNN) in the dip-angle domain. This procedure can significantly improve the image quality of ERTM by recognizing the dominant reflection events and rejecting the crosstalk artifacts in the dip-angle domain. This method can be divided into the following three steps. First, we generate the dip-angle gathers of ERTM using Poynting vectors shot by shot. Then, we stack all the dip-angle gathers over all the shots. Finally, we adopt the CNN to predict the dip-angle constraint, which can suppress the crosstalk artifacts and enhance the ERTM image quality. The picking method using CNN is an end-to-end procedure that can perform automatic picking without additional human intervention once the network is well-trained. The numerical examples have verified the potential of our method. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
资助项目 | National Natural Science Foundation of China[41904051][41804129]
; China Postdoctoral Science Foundation[2018T110137]
|
WOS研究方向 | Geochemistry & Geophysics
|
WOS类目 | Geochemistry & Geophysics
|
WOS记录号 | WOS:000588496500015
|
出版者 | |
EI入藏号 | 20204509471947
|
EI主题词 | Convolutional neural networks
; Numerical methods
; Deep learning
; Electromagnetic waves
; Convolution
; Crosstalk
; Image enhancement
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Electromagnetic Waves:711
; Information Theory and Signal Processing:716.1
; Numerical Methods:921.6
|
ESI学科分类 | GEOSCIENCES
|
Scopus记录号 | 2-s2.0-85095611534
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:15
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/209184 |
专题 | 理学院_地球与空间科学系 |
作者单位 | 1.Southern University of Science and Technology,Department of Earth and Space Sciences,Shenzhen,518055,China 2.University of Science and Technology of China,School of Earth and Space Sciences,Hefei,230026,China 3.Chinese Academy of Sciences,Institute of Geology and Geophysics,Key Laboratory of Petroleum Resources Research,Beijing,100029,China 4.Princeton University,Department of Geosciences,Princeton,08544,United States 5.Chinese Academy of Geological Sciences,Institute of Geomechanics,Beijing,100081,China |
第一作者单位 | 地球与空间科学系 |
第一作者的第一单位 | 地球与空间科学系 |
推荐引用方式 GB/T 7714 |
Lu,Yongming,Sun,Hui,Wang,Xiaoyi,et al. Improving the image quality of elastic reverse-time migration in the dip-angle domain using deep learning[J]. GEOPHYSICS,2020,85(5):S269-S283.
|
APA |
Lu,Yongming,Sun,Hui,Wang,Xiaoyi,Liu,Qiancheng,&Zhang,Hao.(2020).Improving the image quality of elastic reverse-time migration in the dip-angle domain using deep learning.GEOPHYSICS,85(5),S269-S283.
|
MLA |
Lu,Yongming,et al."Improving the image quality of elastic reverse-time migration in the dip-angle domain using deep learning".GEOPHYSICS 85.5(2020):S269-S283.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Improving the image (8360KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论