中文版 | English
题名

Improving the image quality of elastic reverse-time migration in the dip-angle domain using deep learning

作者
通讯作者Sun,Hui
发表日期
2020-09-01
DOI
发表期刊
ISSN
0016-8033
EISSN
1942-2156
卷号85期号:5页码:S269-S283
摘要

Elastic reverse-time migration (ERTM) is becoming increasingly feasible with the development of high-performance computing. It can provide more physical information on subsurface structures. However, the crosstalk artifacts degrade the imaging resolution of ERTM. To obtain high-resolution ERTM imaging, we have developed additional constraints through a convolutional neural network (CNN) in the dip-angle domain. This procedure can significantly improve the image quality of ERTM by recognizing the dominant reflection events and rejecting the crosstalk artifacts in the dip-angle domain. This method can be divided into the following three steps. First, we generate the dip-angle gathers of ERTM using Poynting vectors shot by shot. Then, we stack all the dip-angle gathers over all the shots. Finally, we adopt the CNN to predict the dip-angle constraint, which can suppress the crosstalk artifacts and enhance the ERTM image quality. The picking method using CNN is an end-to-end procedure that can perform automatic picking without additional human intervention once the network is well-trained. The numerical examples have verified the potential of our method.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
National Natural Science Foundation of China[41904051][41804129] ; China Postdoctoral Science Foundation[2018T110137]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:000588496500015
出版者
EI入藏号
20204509471947
EI主题词
Convolutional neural networks ; Numerical methods ; Deep learning ; Electromagnetic waves ; Convolution ; Crosstalk ; Image enhancement
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Electromagnetic Waves:711 ; Information Theory and Signal Processing:716.1 ; Numerical Methods:921.6
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85095611534
来源库
Scopus
引用统计
被引频次[WOS]:15
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209184
专题理学院_地球与空间科学系
作者单位
1.Southern University of Science and Technology,Department of Earth and Space Sciences,Shenzhen,518055,China
2.University of Science and Technology of China,School of Earth and Space Sciences,Hefei,230026,China
3.Chinese Academy of Sciences,Institute of Geology and Geophysics,Key Laboratory of Petroleum Resources Research,Beijing,100029,China
4.Princeton University,Department of Geosciences,Princeton,08544,United States
5.Chinese Academy of Geological Sciences,Institute of Geomechanics,Beijing,100081,China
第一作者单位地球与空间科学系
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Lu,Yongming,Sun,Hui,Wang,Xiaoyi,et al. Improving the image quality of elastic reverse-time migration in the dip-angle domain using deep learning[J]. GEOPHYSICS,2020,85(5):S269-S283.
APA
Lu,Yongming,Sun,Hui,Wang,Xiaoyi,Liu,Qiancheng,&Zhang,Hao.(2020).Improving the image quality of elastic reverse-time migration in the dip-angle domain using deep learning.GEOPHYSICS,85(5),S269-S283.
MLA
Lu,Yongming,et al."Improving the image quality of elastic reverse-time migration in the dip-angle domain using deep learning".GEOPHYSICS 85.5(2020):S269-S283.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Improving the image (8360KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lu,Yongming]的文章
[Sun,Hui]的文章
[Wang,Xiaoyi]的文章
百度学术
百度学术中相似的文章
[Lu,Yongming]的文章
[Sun,Hui]的文章
[Wang,Xiaoyi]的文章
必应学术
必应学术中相似的文章
[Lu,Yongming]的文章
[Sun,Hui]的文章
[Wang,Xiaoyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。