中文版 | English
题名

A Novel Deep Learning Approach for Short and Medium-Term Electrical Load Forecasting Based on Pooling LSTM-CNN Model

作者
通讯作者Jia,Youwei
DOI
发表日期
2020-07-01
会议名称
2020 IEEE/IAS Industrial and Commercial Power System Asia, I and CPS Asia 2020
ISBN
978-1-7281-4304-0
会议录名称
页码
26-34
会议日期
2020/7/13-2020/7/15
会议地点
online virtual conference
摘要

The power system is moving towards a more smart, intelligent and interactive framework. With the transition of power systems, there is also a maximum demand for renewable power generation and load forecasting. Load forecasting plays a vital and key role in the power grid planning, maintenance, and operation for electric energy customers. Accurate and timely load forecasting helps electric power suppliers to assist load scheduling and minimize the waste of electric power. Since the behavior and nature of electric load time series are non-linear because of the irregular change and an increase in the electric power demand with an increasing population, a neural network is one of the best candidates for constructing the non-linear behavior models used for forecasting. We proposed a deep learning-based approach that uses pooling long short-term memory (LSTM) based convolutional neural network to get the forecasting models for short- and medium-term electric load forecasting. Our method resolves the non-linearity and uncertainty issues by using many linear and non-linear methods to select the best features, time series models and several layers for pooling the LSTM model. The experimental results show that our method achieves more accurate results in short-term and medium-term load forecasting on metrics such as least Mean Absolute Error (MAE) and Root Mean Square Error (RMSE).

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20204409415119
EI主题词
Time series ; Convolutional neural networks ; Electric power plant loads ; Electric power transmission networks ; Learning systems ; Mean square error ; Electric load forecasting ; Errors
EI分类号
Electric Power Systems:706.1 ; Electric Power Transmission:706.1.1 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85093938880
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9208557
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209200
专题南方科技大学
工学院_电子与电气工程系
作者单位
1.Southern University of Science and Technology,University Key Laboratory of Advanced Wireless Communication of Guangdong Province Southern,University of Science and Technology,Dept of Electrical and Electronic Engineering,China
2.Kunming University,Dept. of Facility and Laboratory Management,China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Yang,Yabiao,Haq,Ejaz Ui,Jia,Youwei. A Novel Deep Learning Approach for Short and Medium-Term Electrical Load Forecasting Based on Pooling LSTM-CNN Model[C],2020:26-34.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang,Yabiao]的文章
[Haq,Ejaz Ui]的文章
[Jia,Youwei]的文章
百度学术
百度学术中相似的文章
[Yang,Yabiao]的文章
[Haq,Ejaz Ui]的文章
[Jia,Youwei]的文章
必应学术
必应学术中相似的文章
[Yang,Yabiao]的文章
[Haq,Ejaz Ui]的文章
[Jia,Youwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。