题名 | EvalDNN: A toolbox for evaluating deep neural network models |
作者 | |
通讯作者 | Zeng,Zhihua |
DOI | |
发表日期 | 2020-06-27
|
ISSN | 0270-5257
|
ISBN | 978-1-7281-6528-8
|
会议录名称 | |
页码 | 45-48
|
会议日期 | 5-11 Oct. 2020
|
会议地点 | Seoul, Korea (South)
|
摘要 | Recent studies have shown that the performance of deep learningmodels should be evaluated using various important metrics suchas robustness and neuron coverage, besides the widely-used prediction accuracy metric. However, major deep learning frameworkscurrently only provide APIs to evaluate a model's accuracy. In order to comprehensively assess a deep learning model, frameworkusers and researchers often need to implement new metrics bythemselves, which is a tedious job. What is worse, due to the largenumber of hyper-parameters and inadequate documentation, evaluation results of some deep learning models are hard to reproduce,especially when the models and metrics are both new.To ease the model evaluation in deep learning systems, we havedeveloped EvalDNN, a user-friendly and extensible toolbox supporting multiple frameworks and metrics with a set of carefullydesigned APIs. Using EvalDNN, evaluation of a pre-trained modelwith respect to different metrics can be done with a few lines ofcode. We have evaluated EvalDNN on 79 models from TensorFlow,Keras, GluonCV, and PyTorch. As a result of our effort made toreproduce the evaluation results of existing work, we release aperformance benchmark of popular models, which can be a useful reference to facilitate future research. The tool and benchmarkare available at https://github.com/yqtianust/EvalDNN and https://yqtianust.github.io/EvalDNN-benchmark/, respectively. A demovideo of EvalDNN is available at: https://youtu.be/v69bNJN2bJc. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20204409420993
|
EI主题词 | HTTP
; Neural network models
; Deep neural networks
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Artificial Intelligence:723.4
|
Scopus记录号 | 2-s2.0-85094112889
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9270369 |
引用统计 |
被引频次[WOS]:11
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/209207 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Hong Kong University of Science and Technology,Hong Kong,Hong Kong 2.Zhejiang University,Hangzhou,China 3.Huazhong University of Science and Technology,Wuhan,China 4.Southern University of Science and Technology,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Tian,Yongqiang,Zeng,Zhihua,Wen,Ming,et al. EvalDNN: A toolbox for evaluating deep neural network models[C],2020:45-48.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论