中文版 | English
题名

EvalDNN: A toolbox for evaluating deep neural network models

作者
通讯作者Zeng,Zhihua
DOI
发表日期
2020-06-27
ISSN
0270-5257
ISBN
978-1-7281-6528-8
会议录名称
页码
45-48
会议日期
5-11 Oct. 2020
会议地点
Seoul, Korea (South)
摘要
Recent studies have shown that the performance of deep learningmodels should be evaluated using various important metrics suchas robustness and neuron coverage, besides the widely-used prediction accuracy metric. However, major deep learning frameworkscurrently only provide APIs to evaluate a model's accuracy. In order to comprehensively assess a deep learning model, frameworkusers and researchers often need to implement new metrics bythemselves, which is a tedious job. What is worse, due to the largenumber of hyper-parameters and inadequate documentation, evaluation results of some deep learning models are hard to reproduce,especially when the models and metrics are both new.To ease the model evaluation in deep learning systems, we havedeveloped EvalDNN, a user-friendly and extensible toolbox supporting multiple frameworks and metrics with a set of carefullydesigned APIs. Using EvalDNN, evaluation of a pre-trained modelwith respect to different metrics can be done with a few lines ofcode. We have evaluated EvalDNN on 79 models from TensorFlow,Keras, GluonCV, and PyTorch. As a result of our effort made toreproduce the evaluation results of existing work, we release aperformance benchmark of popular models, which can be a useful reference to facilitate future research. The tool and benchmarkare available at https://github.com/yqtianust/EvalDNN and https://yqtianust.github.io/EvalDNN-benchmark/, respectively. A demovideo of EvalDNN is available at: https://youtu.be/v69bNJN2bJc.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20204409420993
EI主题词
HTTP ; Neural network models ; Deep neural networks
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Artificial Intelligence:723.4
Scopus记录号
2-s2.0-85094112889
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9270369
引用统计
被引频次[WOS]:11
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209207
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Hong Kong University of Science and Technology,Hong Kong,Hong Kong
2.Zhejiang University,Hangzhou,China
3.Huazhong University of Science and Technology,Wuhan,China
4.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Tian,Yongqiang,Zeng,Zhihua,Wen,Ming,et al. EvalDNN: A toolbox for evaluating deep neural network models[C],2020:45-48.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tian,Yongqiang]的文章
[Zeng,Zhihua]的文章
[Wen,Ming]的文章
百度学术
百度学术中相似的文章
[Tian,Yongqiang]的文章
[Zeng,Zhihua]的文章
[Wen,Ming]的文章
必应学术
必应学术中相似的文章
[Tian,Yongqiang]的文章
[Zeng,Zhihua]的文章
[Wen,Ming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。