中文版 | English
题名

Noise-aware fully webly supervised object detection

作者
通讯作者Ji,Rongrong
DOI
发表日期
2020
ISSN
1063-6919
ISBN
978-1-7281-7169-2
会议录名称
页码
11323-11332
会议日期
13-19 June 2020
会议地点
Seattle, WA, USA
摘要
We investigate the emerging task of learning object detectors with sole image-level labels on the web without requiring any other supervision like precise annotations or additional images from well-annotated benchmark datasets. Such a task, termed as fully webly supervised object detection, is extremely challenging, since image-level labels on the web are always noisy, leading to poor performance of the learned detectors. In this work, we propose an end-to-end framework to jointly learn webly supervised detectors and reduce the negative impact of noisy labels. Such noise is heterogeneous, which is further categorized into two types, namely background noise and foreground noise. Regarding the background noise, we propose a residual learning structure incorporated with weakly supervised detection, which decomposes background noise and models clean data. To explicitly learn the residual feature between clean data and noisy labels, we further propose a spatially-sensitive entropy criterion, which exploits the conditional distribution of detection results to estimate the confidence of background categories being noise. Regarding the foreground noise, a bagging-mixup learning is introduced, which suppresses foreground noisy signals from incorrectly labelled images, whilst maintaining the diversity of training data. We evaluate the proposed approach on popular benchmark datasets by training detectors on web images, which are retrieved by the corresponding category tags from photo-sharing sites. Extensive experiments show that our method achieves significant improvements over the state-of-the-art methods
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20204409431272
EI主题词
Object recognition ; Computer vision
EI分类号
Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Vision:741.2
Scopus记录号
2-s2.0-85094325663
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9156477
引用统计
被引频次[WOS]:7
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209263
专题工学院_计算机科学与工程系
作者单位
1.Media Analytics and Computing Lab,Department of Artificial Intelligence,School of Informatics,Xiamen University,China
2.Xi'an Jiaotong University,China
3.Department of Computer Science and Engineering,Southern University of Science and Technology,China
4.Noah's Ark Lab,Huawei Technologies,China
5.Zhengzhou University,China
推荐引用方式
GB/T 7714
Shen,Yunhang,Ji,Rongrong,Chen,Zhiwei,et al. Noise-aware fully webly supervised object detection[C],2020:11323-11332.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shen,Yunhang]的文章
[Ji,Rongrong]的文章
[Chen,Zhiwei]的文章
百度学术
百度学术中相似的文章
[Shen,Yunhang]的文章
[Ji,Rongrong]的文章
[Chen,Zhiwei]的文章
必应学术
必应学术中相似的文章
[Shen,Yunhang]的文章
[Ji,Rongrong]的文章
[Chen,Zhiwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。