中文版 | English
题名

Salience-guided cascaded suppression network for person re-identification

作者
通讯作者Zheng,Feng
DOI
发表日期
2020
ISSN
1063-6919
ISBN
978-1-7281-7169-2
会议录名称
页码
3297-3307
会议日期
13-19 June 2020
会议地点
Seattle, WA, USA
摘要
Employing attention mechanisms to model both global and local features as a final pedestrian representation has become a trend for person re-identification (Re-ID) algorithms. A potential limitation of these methods is that they focus on the most salient features, but the re-identification of a person may rely on diverse clues masked by the most salient features in different situations, e.g., body, clothes or even shoes. To handle this limitation, we propose a novel Salience-guided Cascaded Suppression Network (SCSN) which enables the model to mine diverse salient features and integrate these features into the final representation by a cascaded manner. Our work makes the following contributions: (i) We observe that the previously learned salient features may hinder the network from learning other important information. To tackle this limitation, we introduce a cascaded suppression strategy, which enables the network to mine diverse potential useful features that be masked by the other salient features stage-by-stage and each stage integrates different feature embedding for the last discriminative pedestrian representation. (ii) We propose a Salient Feature Extraction (SFE) unit, which can suppress the salient features learned in the previous cascaded stage and then adaptively extracts other potential salient feature to obtain different clues of pedestrians. (iii) We develop an efficient feature aggregation strategy that fully increases the network's capacity for all potential salience features. Finally, experimental results demonstrate that our proposed method outperforms the state-of-the-art methods on four large-scale datasets. Especially, our approach exceeds the current best method by over 7% on the CUHK03 dataset.
关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20204409424826
EI主题词
Computer vision
EI分类号
Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Vision:741.2
Scopus记录号
2-s2.0-85094173901
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9156982
引用统计
被引频次[WOS]:191
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209276
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.School of Electronic and Computer Engineering,Peking University,China
2.Southern University of Science and Technology,China
3.Tencent,China
4.Xiamen University,China
5.ReLER Lab,Centre for AI,University of Technology,Sydney,Australia
6.University of Electronic Science and Technology of China,China
7.Peng Cheng Laboratory,China
8.Feng Zheng Lab,SUSTech,China
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Chen,Xuesong,Fu,Canmiao,Zhao,Yong,et al. Salience-guided cascaded suppression network for person re-identification[C],2020:3297-3307.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Xuesong]的文章
[Fu,Canmiao]的文章
[Zhao,Yong]的文章
百度学术
百度学术中相似的文章
[Chen,Xuesong]的文章
[Fu,Canmiao]的文章
[Zhao,Yong]的文章
必应学术
必应学术中相似的文章
[Chen,Xuesong]的文章
[Fu,Canmiao]的文章
[Zhao,Yong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。