题名 | Deep Class-Specific Affinity-Guided Convolutional Network for Multimodal Unpaired Image Segmentation |
作者 | |
通讯作者 | Zhang,Jianguo |
DOI | |
发表日期 | 2020
|
会议名称 | International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI-2020)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 12264 LNCS
|
页码 | 187-196
|
会议日期 | OCTOBER 2020
|
会议地点 | Istanbul, TURKEY
|
摘要 | Multi-modal medical image segmentation plays an essential role in clinical diagnosis. It remains challenging as the input modalities are often not well-aligned spatially. Existing learning-based methods mainly consider sharing trainable layers across modalities and minimizing visual feature discrepancies. While the problem is often formulated as joint supervised feature learning, multiple-scale features and class-specific representation have not yet been explored. In this paper, we propose an affinity-guided fully convolutional network for multimodal image segmentation. To learn effective representations, we design class-specific affinity matrices to encode the knowledge of hierarchical feature reasoning, together with the shared convolutional layers to ensure the cross-modality generalization. Our affinity matrix does not depend on spatial alignments of the visual features and thus allows us to train with unpaired, multimodal inputs. We extensively evaluated our method on two public multimodal benchmark datasets and outperform state-of-the-art methods. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20204309380377
|
EI主题词 | Convolution
; Diagnosis
; Medical imaging
|
EI分类号 | Biomedical Engineering:461.1
; Medicine and Pharmacology:461.6
; Information Theory and Signal Processing:716.1
; Imaging Techniques:746
|
Scopus记录号 | 2-s2.0-85092790795
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/209308 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China 2.NVIDIA,Santa Clara,United States 3.Technical University of Munich,Munich,Germany |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Chen,Jingkun,Li,Wenqi,Li,Hongwei,et al. Deep Class-Specific Affinity-Guided Convolutional Network for Multimodal Unpaired Image Segmentation[C],2020:187-196.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论