中文版 | English
题名

Deep Class-Specific Affinity-Guided Convolutional Network for Multimodal Unpaired Image Segmentation

作者
通讯作者Zhang,Jianguo
DOI
发表日期
2020
会议名称
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI-2020)
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12264 LNCS
页码
187-196
会议日期
OCTOBER 2020
会议地点
Istanbul, TURKEY
摘要

Multi-modal medical image segmentation plays an essential role in clinical diagnosis. It remains challenging as the input modalities are often not well-aligned spatially. Existing learning-based methods mainly consider sharing trainable layers across modalities and minimizing visual feature discrepancies. While the problem is often formulated as joint supervised feature learning, multiple-scale features and class-specific representation have not yet been explored. In this paper, we propose an affinity-guided fully convolutional network for multimodal image segmentation. To learn effective representations, we design class-specific affinity matrices to encode the knowledge of hierarchical feature reasoning, together with the shared convolutional layers to ensure the cross-modality generalization. Our affinity matrix does not depend on spatial alignments of the visual features and thus allows us to train with unpaired, multimodal inputs. We extensively evaluated our method on two public multimodal benchmark datasets and outperform state-of-the-art methods.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20204309380377
EI主题词
Convolution ; Diagnosis ; Medical imaging
EI分类号
Biomedical Engineering:461.1 ; Medicine and Pharmacology:461.6 ; Information Theory and Signal Processing:716.1 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85092790795
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209308
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.NVIDIA,Santa Clara,United States
3.Technical University of Munich,Munich,Germany
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Chen,Jingkun,Li,Wenqi,Li,Hongwei,et al. Deep Class-Specific Affinity-Guided Convolutional Network for Multimodal Unpaired Image Segmentation[C],2020:187-196.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Jingkun]的文章
[Li,Wenqi]的文章
[Li,Hongwei]的文章
百度学术
百度学术中相似的文章
[Chen,Jingkun]的文章
[Li,Wenqi]的文章
[Li,Hongwei]的文章
必应学术
必应学术中相似的文章
[Chen,Jingkun]的文章
[Li,Wenqi]的文章
[Li,Hongwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。