中文版 | English
题名

Cerebrovascular Segmentation in MRA via Reverse Edge Attention Network

作者
通讯作者Xia,Likun
DOI
发表日期
2020
会议名称
International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI 2020)
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12266 LNCS
页码
66-75
会议日期
4-8 October
会议地点
Lima, Peru
摘要

Automated extraction of cerebrovascular is of great importance in understanding the mechanism, diagnosis, and treatment of many cerebrovascular pathologies. However, segmentation of cerebrovascular networks from magnetic resonance angiography (MRA) imagery continues to be challenging because of relatively poor contrast and inhomogeneous backgrounds, and the anatomical variations, complex geometry and topology of the networks themselves. In this paper, we present a novel cerebrovascular segmentation framework that consists of image enhancement and segmentation phases. We aim to remove redundant features, while retaining edge information in shallow features when combining these with deep features. We first employ a Retinex model, which is able to model noise explicitly to aid removal of imaging noise, as well as reducing redundancy within an image and emphasizing the vessel regions, thereby simplifying the subsequent segmentation problem. Subsequently, a reverse edge attention module is employed to discover edge information by paying particular attention to the regions that are not salient in high-level semantic features. The experimental results show that the proposed framework enables the reverse edge attention network to deliver a reliable cerebrovascular segmentation.

关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20204309380763
EI主题词
Magnetic resonance ; Semantics ; Semantic Segmentation
EI分类号
Magnetism: Basic Concepts and Phenomena:701.2 ; Artificial Intelligence:723.4
Scopus记录号
2-s2.0-85092784696
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209310
专题工学院_计算机科学与工程系
作者单位
1.College of Information Engineering,Capital Normal University,Beijing,China
2.Cixi Institute of Biomedical Engineering,Ningbo Institute of Industrial Technology,Chinese Academy of Sciences,Ningbo,China
3.School of Control Science and Engineering,Shandong University,Jinan,China
4.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
5.International Science and Technology Cooperation Base of Electronic System Reliability and Mathematical Interdisciplinary,Capital Normal University,Beijing,China
6.Laboratory of Neural Computing and Intelligent Perception,Capital Normal University,Beijing,China
7.Beijing Advanced Innovation Center for Imaging Theory and Technology,Capital Normal University,Beijing,China
推荐引用方式
GB/T 7714
Zhang,Hao,Xia,Likun,Song,Ran,et al. Cerebrovascular Segmentation in MRA via Reverse Edge Attention Network[C],2020:66-75.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Cerebrovascular Segm(4892KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Hao]的文章
[Xia,Likun]的文章
[Song,Ran]的文章
百度学术
百度学术中相似的文章
[Zhang,Hao]的文章
[Xia,Likun]的文章
[Song,Ran]的文章
必应学术
必应学术中相似的文章
[Zhang,Hao]的文章
[Xia,Likun]的文章
[Song,Ran]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。