中文版 | English
题名

A 3D+2D CNN Approach Incorporating Boundary Loss for Stroke Lesion Segmentation

作者
通讯作者Tang,Xiaoying
DOI
发表日期
2020
会议名称
International Workshop on Machine Learning in Medical Imaging MLMI 2020: Machine Learning in Medical Imaging
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12436 LNCS
页码
101-110
会议日期
2020
会议地点
peru
摘要

Dice loss is the most widely used loss function in deep learning methods for unbalanced medical image segmentation. The main limitation of Dice loss is that it weighs different parts of the to-be-segmented region of interest (ROI) equally, which is inappropriate given that the fuzzy boundary is typically more challenging to segment than central parts. A recently-proposed boundary loss weighs different parts of an ROI according to their distances to the ROI’s boundary, thus providing complementary information to Dice loss. However, boundary loss can not be directly applied to patch-based 3D convolutional neural networks (CNNs), significantly limiting its utility. In this paper, we proposed and validated a two-stage 3D+2D framework making use of 3D CNN for spatial information extraction and also boundary loss to complement the typically-used generalized Dice loss, for segmenting stroke lesions from magnetic resonance (MR) images. A 3D patch-based fully convolutional network was firstly used to learn local spatial features. And then the to-be-segmented MR image and the probability map predicted from the trained 3D model were sliced and fed into a 2D network with a joint loss combining boundary loss and generalized Dice loss. We evaluated the proposed method on a publicly-available dataset consisting of 229 T1-weighted MR images. The proposed approach yielded an average Dice score of 56.25% and an average Hausdorff distance of 27.14 mm, performing much better than existing state-of-the-art stroke lesion segmentation methods.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20204309372415
EI主题词
Image segmentation ; Magnetic resonance imaging ; Learning systems ; Convolutional neural networks ; Deep learning ; Medical imaging ; 3D modeling ; Convolution
EI分类号
Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Magnetism: Basic Concepts and Phenomena:701.2 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85092734127
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209318
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China
2.Department of Electrical and Electronic Engineering,The University of Hong Kong,Hong Kong
3.School of Life Science and Technology,University of Electronic Science and Technology,Chengdu,China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Zhang,Yue,Wu,Jiong,Liu,Yilong,et al. A 3D+2D CNN Approach Incorporating Boundary Loss for Stroke Lesion Segmentation[C],2020:101-110.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
A 3D+2D CNN Approach(1615KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Yue]的文章
[Wu,Jiong]的文章
[Liu,Yilong]的文章
百度学术
百度学术中相似的文章
[Zhang,Yue]的文章
[Wu,Jiong]的文章
[Liu,Yilong]的文章
必应学术
必应学术中相似的文章
[Zhang,Yue]的文章
[Wu,Jiong]的文章
[Liu,Yilong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。