中文版 | English
题名

Cycle Structure and Illumination Constrained GAN for Medical Image Enhancement

作者
通讯作者Zhao,Yitian
DOI
发表日期
2020
会议名称
23rd INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING & COMPUTER ASSISTED INTERVENTION (MICCAI))
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12262 LNCS
页码
667-677
会议日期
OCT 04-08, 2020
会议地点
Lima, PERU
摘要

The non-uniform illumination or imbalanced intensity in medical images brings challenges for automated screening, examination and diagnosis of diseases. Previously, CycleGAN was proposed to transform input images into enhanced ones without paired images. However, it did not consider many local details of the structures, which are essential for medical images. In this paper, we propose a Cycle Structure and Illumination constrained GAN (CSI-GAN), for medical image enhancement. Inspired by CycleGAN based on the global constraints of the adversarial loss and cycle consistency, the proposed CSI-GAN treats low and high quality images as those in two domains and computes local structure and illumination constraints for learning both overall characteristics and local details. To evaluate the effectiveness of CSI-GAN, we have conducted experiments over two medical image datasets: corneal confocal microscopy (CCM) and endoscopic images. The experimental results show that our method yields better performance than both conventional methods and other deep learning based methods. As a complementary output, we will release the CCM dataset to the public in the future.

关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20204309372814
EI主题词
Diagnosis ; Medical imaging ; Deep learning
EI分类号
Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85092712433
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209322
专题工学院_计算机科学与工程系
作者单位
1.Cixi Institute of Biomedical Engineering,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo,China
2.Department of Computer Science,Edge Hill University,Ormskirk,United Kingdom
3.Department of Eye and Vision Science,University of Liverpool,Liverpool,United Kingdom
4.Department of Computer Science,Aberystwyth University,Aberystwyth,United Kingdom
5.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Ma,Yuhui,Liu,Yonghuai,Cheng,Jun,et al. Cycle Structure and Illumination Constrained GAN for Medical Image Enhancement[C],2020:667-677.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Cycle Structure and (2027KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ma,Yuhui]的文章
[Liu,Yonghuai]的文章
[Cheng,Jun]的文章
百度学术
百度学术中相似的文章
[Ma,Yuhui]的文章
[Liu,Yonghuai]的文章
[Cheng,Jun]的文章
必应学术
必应学术中相似的文章
[Ma,Yuhui]的文章
[Liu,Yonghuai]的文章
[Cheng,Jun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。