中文版 | English
题名

Open-Appositional-Synechial Anterior Chamber Angle Classification in AS-OCT Sequences

作者
通讯作者Zhao,Yitian
DOI
发表日期
2020
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12265 LNCS
页码
715-724
摘要
Anterior chamber angle (ACA) classification is a key step in the diagnosis of angle-closure glaucoma in Anterior Segment Optical Coherence Tomography (AS-OCT). Existing automated analysis methods focus on a binary classification system (i.e., open angle or angle-closure) in a 2D AS-OCT slice. However, clinical diagnosis requires a more discriminating ACA three-class system (i.e., open, appositional, or synechial angles) for the benefit of clinicians who seek better to understand the progression of the spectrum of angle-closure glaucoma types. To address this, we propose a novel sequence multi-scale aggregation deep network (SMA-Net) for open-appositional-synechial ACA classification based on an AS-OCT sequence. In our method, a Multi-Scale Discriminative Aggregation (MSDA) block is utilized to learn the multi-scale representations at slice level, while a ConvLSTM is introduced to study the temporal dynamics of these representations at sequence level. Finally, a multi-level loss function is used to combine the slice-based and sequence-based losses. The proposed method is evaluated across two AS-OCT datasets. The experimental results show that the proposed method outperforms existing state-of-the-art methods in applicability, effectiveness, and accuracy. We believe this work to be the first attempt to classify ACAs into open, appositional, or synechial types grading using AS-OCT sequences.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20204309372617
EI主题词
Classification (of information) ; Medical computing ; Ophthalmology ; Medical imaging ; Optical tomography ; Computer aided diagnosis
EI分类号
Biomedical Engineering:461.1 ; Medicine and Pharmacology:461.6 ; Information Theory and Signal Processing:716.1 ; Computer Applications:723.5 ; Optical Devices and Systems:741.3 ; Imaging Techniques:746 ; Information Sources and Analysis:903.1
Scopus记录号
2-s2.0-85092706870
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209323
专题工学院_计算机科学与工程系
作者单位
1.Cixi Institute of Biomedical Engineering,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo,China
2.Inception Institute of Artificial Intelligence,Abu Dhabi,United Arab Emirates
3.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
4.State Key Laboratory of Ophthalmology,Zhongshan Ophthalmic Center,Sun Yat-sen University,Guangzhou,China
5.Glaucoma Artificial Intelligence Diagnosis and Imaging Analysis Joint Research Lab,Guangzhou and Ningbo,China
推荐引用方式
GB/T 7714
Hao,Huaying,Fu,Huazhu,Xu,Yanwu,et al. Open-Appositional-Synechial Anterior Chamber Angle Classification in AS-OCT Sequences[C],2020:715-724.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hao,Huaying]的文章
[Fu,Huazhu]的文章
[Xu,Yanwu]的文章
百度学术
百度学术中相似的文章
[Hao,Huaying]的文章
[Fu,Huazhu]的文章
[Xu,Yanwu]的文章
必应学术
必应学术中相似的文章
[Hao,Huaying]的文章
[Fu,Huazhu]的文章
[Xu,Yanwu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。