中文版 | English
题名

Acoustic source imaging using densely connected convolutional networks

作者
通讯作者Liu, Yu
发表日期
2021-04-01
DOI
发表期刊
ISSN
0888-3270
EISSN
1096-1216
卷号151页码:107370
摘要

The localization of acoustic sources using acoustic imaging methods such as acoustic beamforming can be limited by the Rayleigh resolution limit at relatively low frequencies and the output of these methods may also produce spatial aliasing images referred to as sidelobes, particularly at high frequencies. To date, there are very few Deep Neural Network (DNN) applications for acoustic imaging to help alleviate some of these issues. In this study, several DNN models were developed with a training strategy specifically designed for an acoustic imaging task. This proposed DNN-based method is examined for various acoustic source conditions and compared with other classic acoustic imaging methods. The DNN method is able to recognize the pattern behind microphone array signals for different source positions, by using the real-component of the cross-spectral matrix of the received pressure vectors at the microphone positions. This input feature allows the DNN model to accurately locate and quantify the source strengths of complicated distributed acoustic sources, even at low frequencies that typically challenge acoustic beamforming deconvolution methods. The loss function of the DNN model is based on the difference between the estimated and true acoustic source maps, that is used to iteratively improve weighting functions within the DNN hidden layers. DNN models with both a fixed and random number of input sources are simulated for a range of specific frequencies. The DNN model with a random number of input sources is tested against conventional beamforming, CLEAN-SC and DAMAS, revealing a far improved source localization and source strength estimation. These DNN models represent a very promising proof-of-concept for the use of DNN models in the field of acoustic imaging.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[11772146,91752204] ; Department of Science and Technology of Guangdong Province[2019B21203001] ; Science, Technology and Innovation Commission of Shenzhen Municipality[JCYJ20170817110605193]
WOS研究方向
Engineering
WOS类目
Engineering, Mechanical
WOS记录号
WOS:000640530600012
出版者
EI入藏号
20204709509744
EI主题词
Microphone array ; Neural network models ; Beamforming ; Iterative methods ; Acoustic imaging
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Electromagnetic Waves in Relation to Various Structures:711.2 ; Artificial Intelligence:723.4 ; Imaging Techniques:746 ; Acoustic Properties of Materials:751.2 ; Acoustic Devices:752.1 ; Numerical Methods:921.6
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85096157481
来源库
Scopus
引用统计
被引频次[WOS]:21
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209398
专题工学院_力学与航空航天工程系
作者单位
1.Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
2.Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Southern University of Science and Technology, Shenzhen, 518055, China
第一作者单位力学与航空航天工程系;  南方科技大学
通讯作者单位力学与航空航天工程系;  南方科技大学
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Xu, Pengwei,Arcondoulis, Elias J.G.,Liu, Yu. Acoustic source imaging using densely connected convolutional networks[J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING,2021,151:107370.
APA
Xu, Pengwei,Arcondoulis, Elias J.G.,&Liu, Yu.(2021).Acoustic source imaging using densely connected convolutional networks.MECHANICAL SYSTEMS AND SIGNAL PROCESSING,151,107370.
MLA
Xu, Pengwei,et al."Acoustic source imaging using densely connected convolutional networks".MECHANICAL SYSTEMS AND SIGNAL PROCESSING 151(2021):107370.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu, Pengwei]的文章
[Arcondoulis, Elias J.G.]的文章
[Liu, Yu]的文章
百度学术
百度学术中相似的文章
[Xu, Pengwei]的文章
[Arcondoulis, Elias J.G.]的文章
[Liu, Yu]的文章
必应学术
必应学术中相似的文章
[Xu, Pengwei]的文章
[Arcondoulis, Elias J.G.]的文章
[Liu, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。